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Abstract

Let V be an N-graded, C2-cofinite vertex operator algebra (VOA) admitting a non-
lowest generated module in ModpVq (e.g., the triplet algebras Wp for p P Zě2 or the
even symplectic fermion VOAs SF`

d for d P Z`). We prove that, unlike in the rational
case, the spaces of conformal blocks associated to certain V-modules do not form a
vector bundle on M0,N for N ě 4 by showing that their dimensions differ between
nodal and smooth curves. Consequently, the sheaf of coinvariants associated to these
V-modules on M0,N is not locally free for N ě 4. It also follows that, unlike in the
rational case, the mode transition algebra A introduced in [DGK25a, DGK25b] is not
isomorphic to the end E “

ş

XPModpVq
X b X1 as an object of ModpVb2q.
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0 Introduction

Let V be an N-graded, C2-cofinite vertex operator algebra (VOA). When V is rational,
a remarkable achievement is the factorization property of conformal blocks associated to
grading-restricted V-modules [DGT24]. This property establishes isomorphisms relating

1



spaces of conformal blocks of higher genus or fewer marked points (e.g., X in (0.1a) or Y
in (0.1b)) to those of lower genus or more marked points (e.g., rX in (0.1a) or rY in (0.1b)):

X “ , rX “ (0.1a)

Y “ , rY “ (0.1b)

These isomorphisms are typically constructed through conformal blocks for nodal curves
(e.g., X0 in (0.2a) or Y0 in (0.2b)) [TUY89, BFM91, Uen97, NT05, Uen08, DGT21, DGT24].

X0 “ (0.2a)

Y0 “ (0.2b)

The proof crucially relies on the fact that the dimensions of the spaces of conformal blocks
for nodal curves (e.g., X0 or Y0) and for smooth curves (e.g. X or Y) coincide, a condition
that ensures the spaces of conformal blocks form a vector bundle on Mg,N (see [DGT24,
Sec. 8] for details). In this paper, we show that, once the rationality assumption is re-
moved, this dimension constancy—and hence the vector bundle structure—no longer
holds for general N-graded, C2-cofinite VOAs.

From now on, let V be an N-graded, C2-cofinite VOA admitting a module in ModpVq

that is not generated by its lowest weight subspace. (It can be proved that the triplet algebras
Wp for p P Zě2 [Kau91, AM08, NT11, TW13] and the even symplectic fermion VOAs SF`

d

for d P Z` [Kau95, GK99, Kau00, Run14, GR15, FGR22] satisfy this condition; see Cor. 1.13
and 1.14.) Recently, Damiolini-Gibney-Krashen introduced the notion of strongly uni-
tal property, a sufficient condition that guarantees the vector bundle structure on Mg,N

[DGK25a, Cor. 5.2.6]. Moreover, it was proved that the triplet algebras Wp do not sat-
isfy the strongly unital property [DGK25a, Prop. 9.1.4]. This provides evidence, though
not directly imply, that the dimensions of spaces of their conformal blocks differ between
nodal and smooth curves.

Motivated by [DGK25b], we obtain our main result (Thm. 2.2), stating that there exist
X,Y P ModpVq such that

dimT ˚

˜

∞ 0

X Y

¸

‰ dimT ˚

˜

∞ 0

X Y

¸

(0.3)

where T ˚p¨ ¨ ¨ q denotes the space of conformal blocks. In fact, our proof shows that X
can be chosen to be an indecomposible projective object, and Y can be chosen to be ei-
ther an indecomposible projective object or a simple object. Our main idea is a variation
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of the following argument: the end E “
ş

XPModpVq
X b X1 and the mode transition alge-

bra A [DGK24, DGK25a, DGK25b] are objects in ModpVb2q representing the conformal
block functor on the two sides of (0.3). However, A is generated by its lowest weight
subspace, but E (which is isomorphic to the contragredient of Li’s regular representation
[Li02, Li22]) is not.

There are several further consequences of (0.3), summarized as follows.

• In [DW25, Question 5.6.3], the authors ask about the relationship between the mode
transition algebra A and the end E. When V is C2-cofinite and rational, it is proved
in [DGK25b] that A » E as objects in ModpVb2q. However, in our case, it follows
immediately from (0.3) that

A fi E “

ż

XPModpVq

X b X1 in ModpVb2q.

See Thm. 2.9 for details.

• In [DGK25b, Question 6.1], the authors ask whether the sheaf of coinvariants forms
a vector bundle. By (0.3) and propagation of conformal blocks, there exist X,Y P

ModpVq such that

dimT ˚

˜

∞ 0

X Y

V V

V

V
V ¸

‰ dimT ˚

˜

∞ 0

X Y

V V

V

V
V ¸

Therefore,

(a) the spaces of conformal blocks associated to X,Y,VbpN´2q do not form a vector
bundle on M0,N for N ě 4.

(b) the sheaf of coinvariants associated to X,Y,VbpN´2q is not locally free on M0,N

for N ě 4.

See Rem. 2.4 for details.

We remark that our result does not rule out the possibility that (0.3) holds as an equal-
ity if the definition of nodal conformal blocks is suitably modified. However, if such a
new definition were to exist, one would not expect it to have a direct connection with the
Zhu algebra ApVq [Zhu96], since in the non-semisimple setting ApVq exerts only weak
control over modules that are not generated by their lowest weight subspaces.
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1 Preliminaries

1.1 Notation

Throughout this paper, we use the following notation.

• N “ t0, 1, 2, ¨ ¨ ¨ u, Z` “ t1, 2, ¨ ¨ ¨ u, Zě2 “ t2, 3, ¨ ¨ ¨ u.

• Let X be a finite set. Then CardpXq denotes the cardinate of X .

• Let ℜpzq be the real part of z P C.

• Let Vect be the category of finite dimensional vector spaces over C.

• Let ζ be the standard coordinate of C.

• Throughout this paper, we fix an N-graded C2-cofinite vertex operator algebra
(VOA) V “

À

nPNVpnq with conformal vector c and vacuum vector 1. Each nonzero
vector v in Vpnq is homogeneous of weight wtpvq “ n.

• For eachN P N, let ModpVbN q denote the category of grading-restricted generalized
VbN -modules. ModpVbN q is an abelian category by [Hua09] (see also [MNT10]).

• Since V is C2-cofinite, it has only finitely many equivalence classes of irreducible
V-modules (see [Hua09, Prop. 4.2]). Denote by Irr a finite set of representatives of
these classes.

• Let X,Y P ModpVq, and assume that X is irreducible. Then rY : Xs denotes the
multiplicity of X in a composition series of Y.

• If W P ModpVbN q and v P V, then the i-th vertex operator

YW,ipv, zq “
ÿ

nPZ
YW,ipvqnz

´n´1

is Y p1b ¨ ¨ ¨ b vb ¨ ¨ ¨ b1, zq with v placed in the i-th component. We abbreviate YW,i

to Yi when no confusion arises. We also define

Y 1
i pv, zq “ YipUpγzqv, z´1q

where Upγzq “ ezLp1qp´z´2qLp0q. Moreover, we expand

Y 1
i pv, zq “

ÿ

nPZ
Y 1
i pvqnz

´n´1

Finally, we set Lipnq “ Yipcqn´1.

• If W P ModpVbN q and λ1, . . . , λN P C, then Wrλ‚s is the subspace of all w P W such
that for all 1 ď i ď N , w is a generalized eigenvector of Lip0q with eigenvalue λi.
Any w P Wrλ‚s is said to be homogeneous of weight λ‚. In this case, we write

wtipwq “ λi, 1 ď i ď N,
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wtpwq “

N
ÿ

i“1

wtipwq “

N
ÿ

i“1

λi.

The finite dimensional subspace Wrďλ‚s is defined to be the direct sum of all Wrµ‚s

where ℜpµiq ď ℜpλiq for all 1 ď i ď N . Then the contragredient VbN -module of W,
as a vector space, is

W1 “
à

λ‚PCN

pWrλ‚sq
˚

Then for each w P W, w1 P W we clearly have

xYipv, zqw,w1y “ xw, Y 1
i pv, zqw1y

Finally, the algebraic completion of W is

W “ pW1q˚ “
ź

λ‚PCN

Wrλ‚s

• If W P ModpVb2q, we refer to the vertex operators Y1 and Y2 as Y` and Y´, respec-
tively, i.e.,

Y`pv, zq “ Y pv b 1, zq, Y´pv, zq “ Y p1 b v, zq.

for v P V. We shall also denote W by pW, Y`, Y´q. If w P W is homogeneous of
weight pλ`, λ´q, then wt`pwq “ λ`,wt´pwq “ λ´ and wtpwq “ λ` ` λ´.

1.2 Non-lowest generated V-modules in ModpVq

In this section, we focus on modules in ModpVq that are not generated by their lowest
weight subspaces.

Definition 1.1. Let X be a weak V-module. Define

ΩpXq “ tw P X : Y pvqnw “ 0 for all v P V, n P Z such that wtpvq ´ n´ 1 ă 0u

We refer to ΩpXq as the lowest weight subspace of X. The module X is said to be lowest
generated if it is generated by ΩpXq.

Remark 1.2. Let X be a weak V-module, and let A denote the subalgebra of EndpXq gen-
erated by all operators Y pvqn where v P V, n P Z. Let Aě0 be the unital subalgebra
generated by all operators Y pvqn such that wtpvq ´ n ´ 1 ě 0. If T is a subspace of ΩpXq,
then it is easy to see that A ¨ T “ Aě0 ¨ T .

Definition 1.3. Let X P ModpVq.

(a) We say that X is singly generated (resp. singly lowest generated) if there exists a
homogeneous vector w P X (resp. w P ΩpXq) such that X is generated by w.
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(b) Assume that X is singly generated. The conformal weight wtpXq of X is defined
to be wtpxq where x P X is homogeneous and satisfies ℜpwtpyqq ě ℜpwtpxqq for all
y P X.

Remark 1.4. Let X P ModpVq.

(a) Assume that X is singly lowest generated. Letw P ΩpXq be any homogeneous vector
generating X. Then Rem. 1.2 implies that wtpXq “ wtpwq.

(b) Assume that X is singly lowest generated. Let Y be a nonzero quotient V-module of
X. Then Y is also singly lowest generated, and wtpYq “ wtpXq. This is because the
homogeneous vector generating X must be sent by the quotient map to a homoge-
neous vector generating Y.

Proposition 1.5. If X is an irreducible V-module, then it is singly lowest generated with confor-
mal weight wtpXq “: α. Moreover, ΩpXq coincides with the subspace Xrαs consisting of eigenvec-
tors of Lp0q with eigenvalue α.

Proof. Since any nonzero homogeneous vector w P ΩpXq generates X, it follows from
Rem. 1.4-(a) that α “ wtpwq. Thus ΩpXq Ă Xrαs. The reverse inclusion ΩpXq Ą Xrαs is
obvious.

Proposition 1.6. Let X P ModpVq. Then ΩpXq “ ‘λPCΩpXqrλs. Consequently, ΩpXq is spanned
by a set of homogeneous vectors.

Proof. Using the decomposition X “ ‘λPCXrλs, each w P ΩpXq can be written as w “
ř

λPCwλ, where wλ P Xrλs. For each n P Z and homogeneous v P V, noting that Y pvqnwλ

are linearly independent for all λ P C, we have wλ P ΩpXqrλs. This proves the decomposi-
tion ΩpXq “ ‘λPCΩpXqrλs.

We need projective covers of irreducible V-modules to study non-lowest generated
V-module. The following theorem is due to [Hua09].

Theorem 1.7. For each irreducible V-module X P ModpVq, there exists a projective cover
φX : PX Ñ X (abbreviated as PX when no confusion arises), i.e.,

(a) PX is a projective V-module in ModpVq.

(b) φX is an epimorphism in ModpVq.

(c) If f : M Ñ PX is a morphism in ModpVq such that the composition

M f
ÝÑ PX

φX
ÝÑ X

is an epimorphism, then f itself is an epimorphism.

Moreover, PX is unique up to isomorphisms in ModpVq.

Remark 1.8. Let X,Y P ModpVq, and assume that X is irreducible. Recall the defini-
tion of rY : Xs from Sec. 1.1. It is well known from the theory of abelian category that
dimHomVpPX,Yq “ rY : Xs (cf. [EGNO15, (1.7)]).
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Proposition 1.9. Let X be an irreducible V-module. Then its projective cover PX is singly gener-
ated. Therefore, by Def. 1.3, the conformal weight wtpPXq is well-defined.

Proof. Let w P PX be a nonzero homogeneous vector such that φXpwq ‰ 0. Define W to be
the submodule of PX generated by w. Then the composition

W ãÑ PX ↠ X (1.1)

is nonzero. Since X is irreducible, (1.1) must be surjective. By Thm. 1.7-(c), it follows that
the inclusion W ãÑ PX is surjective. Hence PX “ W.

Remark 1.10. Let X be an irreducible V-module. Then wtpXq P wtpPXq ` N. In particular,

ℜpwtpPXqq ď ℜpwtpXqq.

Proposition 1.11. Let X P ModpVq be an irreducible V-module. The following conditions are
equivalent:

(a) PX is not lowest generated.

(b) ℜpwtpPXqq ă ℜpwtpXqq.

(c) PX has a composition factor Y P ModpVq with ℜpwtpYqq ă ℜpwtpXqq.

Proof. Assume (b). We show that PX is not lowest generated. Suppose instead that PX is
lowest generated. By Prop. 1.6, there exists a set of homogeneous vectors twi P ΩpPXq :
i P Iu spanning ΩpPXq, and for each i P I let Wi be the submodule of PX generated by
wi. Then Wi is singly lowest generated for each i P I . Since PX is lowest generated, there
exists an epimorphism

ÿ

iPI

Wi ↠ PX

Hence, for some i, the composition Wi ãÑ PX ↠ X is nonzero, and therefore surjective
because X is irreducible. By Thm. 1.7-(c), the inclusion Wi ãÑ PX is an epimorphism. It
follows from Rem. 1.4-(b) that PX is singly lowest generated. Noting that X is a nonzero
quotient V-module of PX, it follows from Rem. 1.4-(b) again that wtpXq “ wtpPXq, contra-
dicting (b). Therefore, (a) holds.

Assume (a). We show that ℜpwtpPXqq ‰ ℜpwtpXqq. Suppose instead that ℜpwtpPXqq “

ℜpwtpXqq. By Rem. 1.10, this forces wtpPXq “ wtpXq “: α and hence pPXqrαs Ă ΩpPXq.
Note that φX restricts to a surjective map

φX : pPXqrαs ↠ Xrαs

Since Xrαs is nonzero, there exists 0 ‰ w P pPXqrαs with φXpwq ‰ 0. Let W be the sub-
module of PX generated by w. Then the composition W ãÑ PX ↠ X is nonzero, hence
surjective because X is irreducible. By Thm. 1.7-(c), the inclusion W ãÑ PX is surjective,
so PX is generated by w P pPXqrαs Ă ΩpPXq. Thus PX is lowest generated, contradicting
(a). Therefore, (b) holds.
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In general, for any M P ModpVq, the set of weights of M coincides with the set of
weights of its composition factors. Hence

ℜpwtpPXqq “ min
Y

ℜpwtpYqq

where Y ranges over all composition factors of PX. Therefore, (b) and (c) are equivalent.

Proposition 1.12. The following are equivalent:

(a) There exists M P ModpVq that is not lowest generated.

(b) There exists an irreducible V-module X P ModpVq such that PX is not lowest generated.

Proof. It suffices to show that (a) implies (b). Assume (a). Suppose instead that PX is
lowest generated for every irreducible X P ModpVq. Let

G :“ ‘XPIrrPX

where Irr is a finite set of representatives of equivalence classes of irreducibles in ModpVq.
Then G is lowest generated and serves as a projective generator of ModpVq. Hence for
any M P ModpVq there exists n P Z` with an epimorphism G‘n ↠ M, implying that M is
lowest generated. Thus every object in ModpVq would be lowest-generated, contradicting
(a).

Corollary 1.13. Let p ě 2 be an integer, and let Wp denote the triplet W -algebra. Then there
exists a module M P ModpWpq that is not lowest generated.

Proof. Since Wp is C2-cofinite [AM08], all of the preceding results for a general C2-cofinite
VOA V apply. The abelian category structure of ModpWpq is due to [NT11]. We follow
the terminology of [TW13, Sec. 3.1]. Up to isomorphisms, the irreducible Wp-modules
are X`

s and X´
s for 1 ď s ď p. Among them, X´

1 is the unique module with the maximal
conformal weight

wtpX´
1 q “

1

4p
pp2p´ 1q2 ´ pp´ 1q2q.

Let P´
1 denote its projective cover. The socle series of P´

1 is given by

X´
1 “ S0pP´

1 q Ă S1pP´
1 q Ă S2pP´

1 q “ P´
1

with S1pP´
1 q{S0pP´

1 q » X`
p´1 ‘X`

p´1 and S2pP´
1 q{S1pP´

1 q » X´
1 . Since

1

4p
p1 ´ pp´ 1q2q “ ℜpwtpX`

p´1qq ă ℜpwtpX´
1 qq “

1

4p
pp2p´ 1q2 ´ pp´ 1q2q,

condition (c) of Prop. 1.11 holds, and hence P´
1 is not lowest generated.

Corollary 1.14. For d P Z`, let SF`
d denote the even symplectic fermion VOA. Then there exists

M P ModpSF`
d q that is not lowest generated.
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Proof. Since SF`
d is C2-cofinite [Abe07], all of the preceding results for a general C2-

cofinite VOA V apply. We follow the terminology of [McR23, Sec. 5]. Noting that
SF`

1 » W2 [GK99, Kau00], it suffices to consider d ě 2 in our proof. Let X˘
1 , X

˘
2 de-

note the irreducible W2-modules described in the proof of Cor. 1.13. Recall that SF`
d is

an extension of Wbd
2 . As a Wbd

2 -module, we have the decomposition

SF`
d “

à

Cardpt1ďiďd:εi“´uq even
Xε1

1 b ¨ ¨ ¨ bXεd
1 (1.2)

Up to isomorphisms, the irreducible SF`
d -modules are X ε

i for i “ 1, 2 and ε “ ˘. By
[McR23, Thm. 5.4], the projective cover P´

1 of X´
1 has a composition factor isomorphic to

the vacuum module X`
1 . Moreover, as a Wbd

2 -module, we have the equivalence

X´
1 » SF`

d b pX´
1 bX`

1 b ¨ ¨ ¨ bX`
1 q (1.3)

Using the decomposition (1.2) and the fusion product Xε1
1 b Xε2

1 “ Xε1ε2
1 in ModpW2q,

together with the fact that wtpX`
1 q “ 0 and wtpX´

1 q “ 1, one shows that wtpX´
1 q “ 1.

Hence,

wtpX´
1 q “ 1 ą 0 “ wtpX`

1 q

By Prop. 1.11, P´
1 is not lowest generated. This completes the proof.

1.3 Smooth conformal block functors

Let N P Z`, and let X be an N -pointed smooth sphere (with local coordinates), i.e.,

X “ pP1
ˇ

ˇx1, ¨ ¨ ¨ , xN ; η1, ¨ ¨ ¨ , ηN q

where x1, ¨ ¨ ¨ , xN are distinct marked points of P1 and each ηi is a local coordinate at xi.
Let W1, ¨ ¨ ¨ ,WN P ModpVq and associate Wi to xi for each i.

The space of smooth conformal blocks associated to X and W1, ¨ ¨ ¨ ,WN , denoted

T ˚
X pW1 b ¨ ¨ ¨ b WN q

consists of linear functionals

W1 b ¨ ¨ ¨ b WN Ñ C

that are invariant under the actions of V and X [FBZ04, NT05, DGT21].
Following the graphical calculus of conformal blocks [GZ25b, Ch. 1], the picture rep-

resenting T ˚
X pW1 b ¨ ¨ ¨ b WN q is

T ˚

˜

W1 W2

W3 W6

W7

W4

W5

x1
x5

x4
x3 x6

x7

x2

¸

illustrated here for N “ 7.
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Definition 1.15. The contravariant functor

T ˚
X : ModpVq ˆ ¨ ¨ ¨ ˆ ModpVq Ñ Vect

pW1, ¨ ¨ ¨ ,WN q ÞÑ T ˚
X pW1 b ¨ ¨ ¨ b WN q

is called the smooth conformal block functor associated to X. In the language of graphi-
cal calculus, T ˚

X is also represented as the smooth conformal block functor corresponding
to

x1
x5

x4
x3 x6

x7

x2

illustrated here for N “ 7.

Recall that ζ is the standard coordinate of C (see Sec. 1.1). Let X,Y P ModpVq and

N “ pP1|8, 0; 1{ζ, ζq, (1.4)

where P1 is identified with C Y t8u and 1{ζ, ζ are local coordinates at 8, 0. The space of
smooth conformal blocks associated to N and X,Y

T ˚
N pX b Yq ” T ˚

˜

∞ 0

X Y

¸

can be explicitly described by the space of linear functionals ψ : XbY Ñ C such that: for
each v P V, x P X, y P Y, the relation

ψpY pv, zqxb yq “ ψpxb Y 1pv, zqyq

holds in Crrz˘1ss. It is well known (cf. e.g. [NT05, Prop. 5.9.1] or [GZ25b, Prop. 2.3]) that
T ˚

N pX b Yq can be identified with HomVpY,X1q via the isomorphism

HomVpY,X1q
»
ÝÑ T ˚

N pX b Yq, T ÞÑ T 5 (1.5)

where T 5pxb yq “
@

x, T pyq
D

.

1.4 Nodal conformal block functors

Let N P Zě2, and let Y be an N -pointed nodal sphere (with local coordinates), i.e.,

Y “ pP
ˇ

ˇx1, ¨ ¨ ¨ , xN ; η1, ¨ ¨ ¨ , ηN q

where P is a nodal sphere (i.e., a nodal curve of genus 0) with one node, x1, ¨ ¨ ¨ , xN are
marked points of C distinct from the nodes and each ηi is a local coordinate at xi. More-
over, we assume that the two irreducible components of P contain x1 and x2, respectively.
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Let W P ModpVb2q and W3, ¨ ¨ ¨ ,WN P ModpVq. Associate W “ pW, Y`, Y´q to x1, x2 via
the default ordering (cf. [GZ25b])

ε : t`,´u Ñ tx1, x2u, εp`q “ x1, εp´q “ x2

and Wi to xi for each 3 ď i ď N .
The space of nodal conformal blocks associated to Y and W,W3, ¨ ¨ ¨ ,WN via the

default ordering ε, denoted

T ˚
Y pW b W3 b ¨ ¨ ¨ b WN q

consists of linear functionals

W b W3 b ¨ ¨ ¨ b WN Ñ C

that are invariant under the action of V and Y [NT05, DGT21, DGT24].
Following the graphical calculus of conformal blocks [GZ25b, Ch. 1], the picture rep-

resenting T ˚
Y pW b W3 b ¨ ¨ ¨ b WN q is

T ˚

˜

W

W3 W6

W7

W4

W5

x1
x5

x4
x3 x6

x7

x2

+ −

¸

illustrated here for N “ 7.
In the special case where W “ W1 bW2 with W1,W2 P ModpVq, the picture represent-

ing T ˚
Y pW b W3 b ¨ ¨ ¨ b WN q ” T ˚

Y pW1 b ¨ ¨ ¨ b WN q is given by

T ˚

˜

W1 W2

W3 W6

W7

W4

W5

x1
x5

x4
x3 x6

x7

x2

¸

illustrated here for N “ 7.

Definition 1.16. The contravariant functor

T ˚
Y : ModpVq ˆ ¨ ¨ ¨ ˆ ModpVq Ñ Vect

pW1, ¨ ¨ ¨ ,WN q ÞÑ T ˚
Y pW1 b ¨ ¨ ¨ b WN q

is called the nodal conformal block functor associated to X. In the language of graphical
calculus, T ˚

Y is also represented as the nodal conformal block functor corresponding to

x1
x5

x4
x3 x6

x7

x2
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Consider the 2-pointed nodal sphere (with local coordinates)

B “ pB
ˇ

ˇ8, 0; 1{ζ, ζq. (1.6)

Here B is the nodal sphere obtained by gluing two copies of

N “ (1.4) “ pP1|8, 0; 1{ζ, ζq

along the point 0 on the first copy and the point 8 on the second. The nodal sphere B
carries two marked points, 8 and 0, both distinct from the node: the point 8 is inherited
from the first copy of N, while 0 is inherited from the second. The local coordinates 1{ζ
and ζ are likewise inherited from the two copies, respectively. Thus, each irreducible
component of B contains exactly one marked point.

Let W P ModpVb2q. The space of nodal conformal blocks associated to B and W via ε

T ˚
B pWq ” T ˚

˜

∞ 0

W+ −

¸

can be explicitly described by the space of linear functionals ψ : W Ñ C such that: for
each n P Z, w P W and homogeneous v P V, we have

ψpY`pvqwtpvq´1wq “ ψpY 1
´pvqwtpvq´1wq (1.7a)

ψpY`pvqnwq “ ψpY´pvqnwq “ 0, if wtpvq ´ n´ 1 ą 0. (1.7b)

Proposition 1.17. For each W P ModpVb2q, T ˚
B pWq, a priori a subspace of W˚, is actually

inside W1.

It follows that T ˚
B pW1q is a subspace of W for each W P ModpVb2q.

Proof. It follows from [Miy04, Lem. 2.4] that there exists an integer ν P N such that any
homogeneous vectorw P W with ℜpwtpwqq ą ν can be expressed as a finite sum of vectors
of the form Y`pu`q´lw` and Y´pu´q´kw´, where l ą 1, k ą 1,w`, w´ P W and u`, u´ P V
homogeneous (see also [GZ23, Lem. 3.24] for a detailed explanation). Let ψ P T ˚

B pWq. By
(1.7b), ψ vanishes on all w P W with ℜpwtpwqq ą ν. Hence, ψ can be regarded as a linear
functional

à

ℜpλ`µqďν

Wrλ,µs Ñ C

Thus, T ˚
B pWq embeds into p‘ℜpλ`µqďνWrλ,µsq

˚, which is finite dimensional. Conse-
quently, T ˚

B pWq itself is finite dimensional.
Define the action of Lp0q on T ˚

B pWq by
@

Lp0qψ, w
D

“
@

ψ, L`p0qw
D

“
@

ψ, L´p0qw
D

, for all ψ P T ˚
B pWq, w P W
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where the last equality is due to (1.7a). We claim that T ˚
B pWq is invariant under Lp0q.

To see this, for each ψ P T ˚
B pWq, w P W and homogeneous v P V, noting that L`p0q

commutes with Y`pvqwtpvq´1, we have
@

Lp0qψ, Y`pvqwtpvq´1w
D

“
@

ψ, L`p0qY`pvqwtpvq´1w
D

“
@

ψ, Y`pvqwtpvq´1L`p0qw
D

“
@

ψ, Y 1
´pvqwtpvq´1L`p0qw

D

“
@

ψ, L`p0qY 1
´pvqwtpvq´1w

D

“
@

Lp0qψ, Y 1
´pvqwtpvq´1w

D

This proves that Lp0qψ satisfies (1.7a). Clearly, Lp0qψ satisfies (1.7b). Thus T ˚
B pWq is

Lp0q-invariant.
The generalized eigenspace decomposition of T ˚

B pWq with respect to Lp0q is

T ˚
B pWq “

N
à

i“1

T ˚
B pWqrλis

, where λi P C.

For each 1 ď i ď N , T ˚
B pWqrλis

is contained in W˚
rλi,λis

. Hence

T ˚
B pWq Ă

N
à

i“1

W˚
rλi,λis

Ă W1.

This completes the proof.

By [DSPS19, Cor. 1.10], every left exact linear functor from a finite C-linear category
to Vect is representable. Therefore, there exists a W-natural linear isomorphism

φW : HomVb2pA,Wq
»
ÝÑ T ˚

B pW1q (1.8)

for some A “ pA, Y`, Y´q P ModpVb2q. It is clear that the A realizing such an isomorphism
as (1.8) are unique up to isomorphisms. We fix such an isomorphism φW. We define

ω “ φApidAq P T ˚
B pA1q Ă A

where the last inclusion is due to Prop. 1.17. The object A is called the (genus 0) nodal
fusion product, and the elementω is called the canonical conformal block. The isomor-
phism φW “ (1.8) is therefore implemented by

φW : HomVb2pA,Wq
»
ÝÑ T ˚

B pW1q

f ÞÑ fpωq
(1.9)

where fpωq, a priori an element of W, actually lies in T ˚
B pW1q. This is because fpωq,

viewed as a linear functional W1 Ñ C, also satisfies a similar property as ψ does in (1.7).

Proposition 1.18. The canonical conformal blockω P A generates A as a Vb2-module.

Proof. Let U P ModpVb2q be the submodule of A generated by ω. We claim that U “ A.
Suppose, for contradiction, that U ‰ A. Take W “ A{U in (1.9). Then (1.9) specializes to

φA{U : HomVb2pA,A{Uq
»
ÝÑ T ˚

B

`

pA{Uq1
˘

f ÞÑ fpωq

13



Let π : A Ñ A{U denote the canonical projection. Since A{U is nonzero, π is a nonzero
morphism. However,

φA{Upπq “ πpωq “ 0

contradicting the injectivity of φA{U. Therefore, U “ A, and henceω generates A.

Corollary 1.19. pA, Y`q is lowest generated as a weak V-module.

Proof. Let ΩpAq denote the lowest weight subspace of pA, Y`q. The submodule A´ of
pA, Y´q generated by ω is contained in ΩpAq. By Prop. 1.18, A´ generates pA, Y`q. Thus,
ΩpAq also generates pA, Y`q.

2 Smooth and nodal conformal blocks

2.1 A dimension criterion

Proposition 2.1. Let φX : PX ↠ X be the projective cover of an irreducible V-module X in
ModpVq. Let Y P ModpVq. If dimHomVpPX,Mq “ dimHomVpY,Mq for all M P ModpVq,
then PX » Y in ModpVq.

Proof. Since

dimHomVpY,Xq “ dimHomVpPX,Xq “ 1

there exists a nonzero morphism α : Y Ñ X. As X is irreducible, α must be an epimor-
phism. By the projectivity of PX, there exists β : PX Ñ Y such that φX “ α ˝ β.

We first show that β is surjective. Suppose, to the contrary, that β is not surjective.
Then the nonzero quotient V-module Y{βpPXq admits an epimorphism onto some irre-
ducible V-module U.

• If U fi X, then dimHomVpPX,Uq “ 0. However, since U is a quotient of Y{βpPXq, we
have dimHomVpY,Uq ą 0, contradicting our assumption.

• If U » X, then the composition

Y ↠ Y{βpPXq ↠ U » X (2.1)

yields a nonzero morphism γ : Y Ñ X. We claim that α, γ are linearly independent
in HomVpY,Xq. To see this, suppose instead that they are linearly dependent. Then,
up to a nonzero scalar multiplication, φX “ α ˝ β coincides with

PX
β
ÝÑ Y ↠ Y{βpPXq ↠ U » X

which is zero, a contradiction. Hence α, γ are linearly independent, and so

dimHomVpY,Xq ě 2 ą 1 “ dimHomVpPX,Xq

which is again a contradiction.
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Therefore, β must be surjective.
We now show that β is injective. Suppose otherwise. Then the transpose of

PX
β
ÝÑ Y α

ÝÑ X

is the sequence

X1 αt

ÝÑ Y1 βt

ÝÑ P 1
X (2.2)

where αt is injective and βt is injective but not surjective. Thus we may regard (2.2) as

X1 Ă Y1 Ĺ P 1
X

It follows that the composition series of P 1
X is strictly longer than that of Y1. Hence there

exists an irreducible V-module W such that rY1 : Ws ă rP 1
X : Ws, equivalently,

dimHomVpPW,Y1q ă dimHomVpPW, P
1
Xq

(See Rem. 1.8). This implies

dimHomVpY, P 1
Wq ‰ dimHomVpPX, P

1
Wq

contradicting our assumption. Therefore, β must be injective, and we conclude that β is
an isomorphism, i.e., PX » Y.

2.2 Non-equivalence of nodal and smooth conformal block functors

Recall the 2-pointed smooth sphere N “ (1.4) “ pP1|8, 0; 1{ζ, ζq and the 2-pointed
nodal sphere B “ (1.6) “ pB

ˇ

ˇ8, 0; 1{ζ, ζq, together with their conformal block functor
T ˚

N ,T
˚
B described in Sec. 1.3 and 1.4.

Theorem 2.2. Assume that there exists a module in ModpVq that is not lowest generated. Then
there exist X,Y P ModpVq such that

dimT ˚
N pX b Yq ‰ dimT ˚

B pX b Yq. (2.3)

The picture for (2.3) is

dimT ˚

˜

∞ 0

X Y

¸

‰ dimT ˚

˜

∞ 0

X Y

¸

Proof. Suppose, to the contrary, that we have

dimT ˚
N pX b Yq “ dimT ˚

B pX b Yq, for all X,Y P ModpVq (2.4)
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By Prop. 1.12, there exists an irreducible W P ModpVq such that PW is not lowest gener-
ated. By (1.8), we have

dimT ˚
B pU1 b PWq “ dimHomVb2pA,U b P 1

Wq, for all U P ModpVq. (2.5)

By [DSPS19, Cor. 1.10], every left exact linear functor from a finite C-linear category to
Vect is representable. Thus, there exists D P ModpVq such that we have a U-natural linear
isomorphism

ψU : HomVpD,Uq
»
ÝÑ HomVb2pA,U b P 1

Wq. (2.6)

We fix such an isomorphism ψU. It follows by (2.5) and (2.6) that

dimT ˚
B pU1 b PWq “ dimHomVpD,Uq, for all U P ModpVq. (2.7)

On the other hand, by (1.5), T ˚
N pU1 b PWq can be identified with HomVpPW,Uq, so

dimT ˚
N pU1 b PWq “ dimHomVpPW,Uq, for all U P ModpVq. (2.8)

By (2.4), (2.7) and (2.8), we have dimHomVpD,Uq “ dimHomVpPW,Uq for all U P ModpVq.
This together with Prop. 2.1 implies that D » PW.

We claim that D is lowest generated. If this claim is true, then it will contradict our
assumption that PW is not lowest generated. This completes our proof. To see the claim,
let

rα P HomVb2pA,D b P 1
Wq

be the element such that rα “ ψDpidDq. The isomorphism ψU “ (2.6) is therefore imple-
mented by

ψU : HomVpD,Uq
»
ÝÑ HomVb2pA,U b P 1

Wq

f ÞÑ pf b idP 1
W

q ˝ rα
(2.9)

We view rα as a linear map

α : A b PW Ñ D, ab x ÞÑ
@

rαpaq, x
D

.

Since rα intertwines the actions of Vb2, α satisfies the following property: for each v P V,
a P A and x P PW, the relations

αpY`pv, zqab xq “ YDpv, zqαpab xq (2.10a)
αpY´pv, zqab xq “ αpab Y 1

PWpv, zqxq (2.10b)

hold in Crrz˘1ss. Suppose that α is not surjective. By (2.10a), the image αpA b PWq is a
proper left V-submodule of D. Set

U “ D{αpA b PWq (2.11)

in (2.9). Then U is nonzero and (2.9) takes the form

HomVpD,D{αpA b PWqq
»
ÝÑ HomVb2

`

A, pD{αpA b PWqq b P 1
W

˘

f ÞÑ pf b idP 1
W

q ˝ rα
(2.12)
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The map pf b idP 1
W

q ˝ rα, viewed as a linear map AbPW Ñ D{αpAbPWq, is equal to f ˝α.
Therefore, the image of the nonzero canonical projection π : D Ñ D{αpA b PWq under
(2.12) is zero, contradicting the injectivity of (2.12). Therefore, αmust be surjective.

Let ΩpAq denote the lowest weight subspace of pA, Y`q, and let ΩpDq denote the lowest
weight subspace of D. By (2.10a), we have

αpΩpAq b PWq Ă ΩpDq

Moreover, by Cor. 1.19, ΩpAq generates A as a left V-module. Since α is surjective and sat-
isfies (2.10a), it follows that D is generated by αpΩpAqbPWq. Consequently, D is generated
by ΩpDq, and hence is lowest generated. This completes the proof.

Remark 2.3. In the proof of Thm. 2.2, the module D is in fact the fusion product of

A PX

and α is the canonical conformal block of D [GZ23]:

α P T ˚

˜

A PX

D

¸

The surjectivity of α is precisely the partial injectivity property of canonical conformal
blocks (cf. [GZ23, Ch. 3] or [GZ24, Rem. 3.17]). Nevertheless, since we do not assume
that the reader is familiar with the notion of fusion products introduced in [GZ23], we
provide here a self-contained proof.

Remark 2.4. Assume that there exists a module in ModpVq that is not lowest generated.
Let N ě 2. By Thm. 2.2 and propagation of conformal blocks [Zhu94, Cod19, DGT21,
GZ23], there exist X,Y P ModpVq such that

dimT ˚

˜

∞ 0

X Y

V V

V

V
V ¸

‰ dimT ˚

˜

∞ 0

X Y

V V

V

V
V ¸

(2.13)

In (2.13), both spheres carry N marked points, partitioned into two groups. The first
group consists of two blue marked points, 8 and 0, inherited from N,B respectively. The
second group consists of N ´ 2 purple marked points, all distinct from the nodes, each
associated with a copy of V.

Though the curves are not stable, they are affine when the marked points are removed.
Therefore, the proof of propagation in [DGT21, Thm. 6.2] (using Riemann-Roch theorem)
still applies to the present situation.

We conclude that:
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(a) The spaces of conformal blocks associated to X,Y,V, ¨ ¨ ¨ ,V do not form a vector
bundle on M0,N for N ě 4.

(b) The sheaf of coinvariants associated to X,Y,V, ¨ ¨ ¨ ,V on M0,N is not locally free for
N ě 4.

(c) The two conformal block functors (cf. Def. 1.15 and 1.16) corresponding to

∞ 0 ∞ 0

are not equivalent.

2.3 The end is not isomorphic to the mode transition algebra

The mode transition algebra A was first introduced in [DGK25b]. A is a quotient of
X b Y by a V ˆ V-invariant subspace, where X,Y P ModpVq. Thus, A is an object in
ModpVb2q. Moreover, A contains a distinguished element, denoted by 1.

Recall the nodal conformal block functor T ˚
B and the smooth conformal block functor

T ˚
N described in Sec. 1.3 and 1.4.

Theorem 2.5 ([DGK25b, Prop. 3.3]). Let X,Y P ModpVq. The linear map

HomVb2pA,X1 b Y1q » T ˚
B pX b Yq

T ÞÑ T p1q

is an isomorphism.

Remark 2.6. By [DGK25b, Prop. 3.3] and propagation of conformal blocks (see Rem. 2.4
for details), there are natural equivalences

T ˚

˜

∞ 0

X Y

A
¸

»
ÝÑ T ˚

˜

∞ 0

X Y

¸

“ T ˚
B pX b Yq (2.14)

The space of smooth conformal blocks on the left hand side of (2.14) can be identified
with HomVb2pA,X1 b Y1q (see [GZ25b, Prop. 2.3] for details). Therefore, Thm. 2.5 follows.

The following remark indicates the relation between the mode transition algebra A
and the nodal fusion product A. It will not be used in this paper.

Remark 2.7. By Thm. 2.5, the mode transition algebra A represents the nodal conformal
block functor. Recall from Sec. 1.4 that the nodal fusion product A represents the nodal
conformal block functor. Thus, A » A as objects of ModpVb2q.
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On the other hand, we consider the end

E “

ż

MPModpVq

M bC M1 P ModpVb2q.

For each M P ModpVq, the dinatural transformation of E gives a morphism φM : E Ñ

M b M1 in ModpVb2q.

Proposition 2.8. Let X,Y P ModpVq. We have an isomorphism

HomVb2pE,X1 b Y1q » T ˚
N pX b Yq (2.15)

Proof. By [FSS20, Cor. 2.9], the linear map

HomVpY,X1q Ñ HomVb2pE,X1 b Y1q

T ÞÑ pidX1 b T tq ˝ φX1

(2.16)

is an isomorphism. See [GZ25a, GZ25b] for details. By (1.5) and (2.16), we have the
isomorphism (2.15).

Theorem 2.9. Assume that there exists a module in ModpVq that is not lowest generated. Then
E fi A in ModpVb2q.

Proof. By Thm. 2.2, there exist X,Y P ModpVq such that

dimT ˚
N pX b Yq ‰ dimT ˚

B pX b Yq. (2.17)

By Thm. 2.5, we have an isomorphism

HomVb2pA,X1 b Y1q » T ˚
B pX b Yq. (2.18)

Suppose, to the contrary, that E » A in ModpVb2q. By Prop. 2.8 and (2.18), there exists an
isomorphism

T ˚
N pX b Yq » T ˚

B pX b Yq.

contradicting (2.17). Therefore, E fi A in ModpVb2q.
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