Non-Equivalence of Smooth and Nodal Conformal
Block Functors in Logarithmic CFT

HAO ZHANG

Abstract

Let V be an N-graded, C>-cofinite vertex operator algebra (VOA) admitting a non-
lowest generated module in Mod(V) (e.g., the triplet algebras W, for p € Z3, or the
even symplectic fermion VOAs SF; for d € Z..). We prove that, unlike in the rational
case, the spaces of conformal blocks associated to certain V-modules do not form a
vector bundle on Mg y for N > 4 by showing that their dimensions differ between
nodal and smooth curves. Consequently, the sheaf of coinvariants associated to these
V-modules on MO, ~ is not locally free for N > 4. It also follows that, unlike in the
rational case, the mode transition algebra 2 introduced in [DGK25a, DGK25b] is not
isomorphic to theend E = §; ;1) X ® X" as an object of Mod (VE?).
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0 Introduction

Let V be an N-graded, C>-cofinite vertex operator algebra (VOA). When V is rational,
a remarkable achievement is the factorization property of conformal blocks associated to
grading-restricted V-modules [DGT24]. This property establishes isomorphisms relating



spaces of conformal blocks of higher genus or fewer marked points (e.g., X in (0.1a) or 9
in (0.1b)) to those of lower genus or more marked points (e.g., X in (0.1a) or 2) in (0.1b)):

X (0.1a)

9 = (0.1b)

==
Il
&3
I

These isomorphisms are typically constructed through conformal blocks for nodal curves
(e.g., Xoin (0.2a) or Qo in (0.2b)) [TUY89, BEM91, Uen97, NTO5, Uen08, DGT21, DGT24].

.’fo = S (O.Za)

@D

The proof crucially relies on the fact that the dimensions of the spaces of conformal blocks
for nodal curves (e.g., Xo or Yo) and for smooth curves (e.g. X or 2)) coincide, a condition
that ensures the spaces of conformal blocks form a vector bundle on ﬂg, N (see [DGT24,
Sec. 8] for details). In this paper, we show that, once the rationality assumption is re-
moved, this dimension constancy—and hence the vector bundle structure—no longer
holds for general N-graded, Cs-cofinite VOAs.

From now on, let V be an N-graded, C>-cofinite VOA admitting a module in Mod(V)
that is not generated by its lowest weight subspace. (It can be proved that the triplet algebras
W, for p € Z>o [Kau9l, AMO08, NT11, TW13] and the even symplectic fermion VOAs SFC;r
ford e Z, [Kau95, GK99, Kau00, Run14, GR15, FGR22] satisfy this condition; see Cor. 1.13
and 1.14.) Recently, Damiolini-Gibney-Krashen introduced the notion of strongly uni-
tal property, a sufficient condition that guarantees the vector bundle structure on M, v
[DGK25a, Cor. 5.2.6]. Moreover, it was proved that the triplet algebras W, do not sat-
isfy the strongly unital property [DGK25a, Prop. 9.1.4]. This provides evidence, though
not directly imply, that the dimensions of spaces of their conformal blocks differ between
nodal and smooth curves.

Motivated by [DGK25b], we obtain our main result (Thm. 2.2), stating that there exist
X,Y € Mod(V) such that

X Y X Y

where .7*(---) denotes the space of conformal blocks. In fact, our proof shows that X
can be chosen to be an indecomposible projective object, and Y can be chosen to be ei-
ther an indecomposible projective object or a simple object. Our main idea is a variation
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of the following argument: the end E = {._, av) X ® X’ and the mode transition alge-

bra 2 [DGK24, DGK25a, DGK25b] are objects in Mod(V®?) representing the conformal
block functor on the two sides of (0.3). However, 2 is generated by its lowest weight
subspace, but E (which is isomorphic to the contragredient of Li’s regular representation
[Li02, Li22]) is not.

There are several further consequences of (0.3), summarized as follows.

¢ In [DW25, Question 5.6.3], the authors ask about the relationship between the mode
transition algebra A and the end E. When V is C>-cofinite and rational, it is proved
in [DGK25b] that 21 ~ E as objects in Mod(V®?). However, in our case, it follows
immediately from (0.3) that

AxE = f X®X'  in Mod(V®?).
XeMod(V)

See Thm. 2.9 for details.

e In [DGK25b, Question 6.1], the authors ask whether the sheaf of coinvariants forms
a vector bundle. By (0.3) and propagation of conformal blocks, there exist X,Y e
Mod (V) such that

VV A\ VV A\
v \Y Vv A\Y
dim 7% # dim %
X Y X Y

Therefore,

(a) the spaces of conformal blocks associated to X, Y, V®WN-2) o not form a vector
bundle on M y for N > 4.

(b) the sheaf of coinvariants associated to X, Y, V®(N=2) js not locally free on Mg y
for N > 4.

See Rem. 2.4 for details.

We remark that our result does not rule out the possibility that (0.3) holds as an equal-
ity if the definition of nodal conformal blocks is suitably modified. However, if such a
new definition were to exist, one would not expect it to have a direct connection with the
Zhu algebra A(V) [Zhu96], since in the non-semisimple setting A(V) exerts only weak
control over modules that are not generated by their lowest weight subspaces.
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1 Preliminaries

1.1

Notation

Throughout this paper, we use the following notation.

N={0,1,2,---},Z. ={1,2,-+-}, Z=y = {2,3,--- }.

Let X be a finite set. Then Card(X) denotes the cardinate of X.

Let R(z) be the real part of z € C.

Let Vect be the category of finite dimensional vector spaces over C.
Let ¢ be the standard coordinate of C.

Throughout this paper, we fix an N-graded Cs-cofinite vertex operator algebra
(VOA)V = @,y V(n) with conformal vector ¢ and vacuum vector 1. Each nonzero
vector v in V(n) is homogeneous of weight wt(v) = n.

For each N € N, let Mod(V®") denote the category of grading-restricted generalized
VON-modules. Mod(V®Y) is an abelian category by [Hua09] (see also [MNT10]).

Since V is Cy-cofinite, it has only finitely many equivalence classes of irreducible
V-modules (see [Hua09, Prop. 4.2]). Denote by Irr a finite set of representatives of
these classes.

Let X,Y € Mod(V), and assume that X is irreducible. Then [Y : X] denotes the
multiplicity of X in a composition series of Y.

If W e Mod(V®Y) and v € V, then the i-th vertex operator

Yw (v, 2) = Z Yawi(v)nz "

neZ

isY(1® - - ®@u®---®1, z) with v placed in the i-th component. We abbreviate Yyy ;
to Y; when no confusion arises. We also define

Y{(v,2) = YiU(vz)v,27")
where U(y,) = e*X(1)(—272)L0), Moreover, we expand

Y/(v,2) = ) Y (0)pz"!

nez
Finally, we set L;(n) = Yi(c)n—1.

If W e Mod(V®V) and Ay, ..., Ay € C, then W(,,] is the subspace of all w € W such
that for all 1 < i < N, w is a generalized eigenvector of L;(0) with eigenvalue ;.
Any w € W,,; is said to be homogeneous of weight A.. In this case, we write

Wti(w)Z)\i, 1<1< N,
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N
wt(w) = Z
The finite dimensional subspace W<y, is defined to be the direct sum of all Wi

where R(11;) < R(\;) for all 1 < i < N. Then the contragredient V¥~ -module of W,
as a vector space, is

Mz

Il
—

[

W= P (Wpy*
Ae€CN

Then for each w € W, w' € W we clearly have

<Yvi(’U7 Z)w’ wl> = <w7 }/i/(va Z)w/>

Finally, the algebraic completion of W is

[T Wpu

Ae€CN

o If W e Mod(V®?), we refer to the vertex operators Y7 and Y5 as Y and Y_, respec-
tively, i.e.,

Yi(v,2) =Y (v®1l,z), Y_(v,2)=Y(1®uv,z).
for v € V. We shall also denote W by (W, Y, ,Y_). If w € W is homogeneous of
weight (A4, A_), then wty (w) = A\, wt_(w) = A_ and wt(w) = Ay + A_.

1.2 Non-lowest generated V-modules in Mod(V)

In this section, we focus on modules in Mod(V) that are not generated by their lowest
weight subspaces.

Definition 1.1. Let X be a weak V-module. Define
QX)) ={weX:Y(v),w=0forallve V,n e Zsuch that wt(v) —n — 1 < 0}

We refer to 2(X) as the lowest weight subspace of X. The module X is said to be lowest
generated if it is generated by Q(X).

Remark 1.2. Let X be a weak V-module, and let A denote the subalgebra of End(X) gen-
erated by all operators Y (v), where v € V,n € Z. Let A-( be the unital subalgebra
generated by all operators Y (v),, such that wt(v) —n —1 > 0. If T is a subspace of (X)),
then it is easy tosee that A- 7 = A>o - T.

Definition 1.3. Let X € Mod(V).

(a) We say that X is singly generated (resp. singly lowest generated) if there exists a
homogeneous vector w € X (resp. w € (X)) such that X is generated by w.



(b) Assume that X is singly generated. The conformal weight wt(X) of X is defined
to be wt(z) where x € X is homogeneous and satisfies ®(wt(y)) > R(wt(z)) for all
ye X

Remark 1.4. Let X € Mod(V).

(a) Assume that X is singly lowest generated. Let w € €2(X) be any homogeneous vector
generating X. Then Rem. 1.2 implies that wt(X) = wt(w).

(b) Assume that X is singly lowest generated. Let Y be a nonzero quotient V-module of
X. Then Y is also singly lowest generated, and wt(Y) = wt(X). This is because the
homogeneous vector generating X must be sent by the quotient map to a homoge-
neous vector generating Y.

Proposition 1.5. If X is an irreducible V-module, then it is singly lowest generated with confor-
mal weight wt(X) =: a. Moreover, )(X) coincides with the subspace X consisting of eigenvec-
tors of L(0) with eigenvalue c.

Proof. Since any nonzero homogeneous vector w € Q(X) generates X, it follows from
Rem. 1.4-(a) that « = wt(w). Thus Q(X) = X|,). The reverse inclusion Q(X) > X[ is
obvious. O

Proposition 1.6. Let X € Mod(V). Then (X) = @recQ(X) (). Consequently, Q(X) is spanned
by a set of homogeneous vectors.

Proof. Using the decomposition X = @xecX[y), each w € Q(X) can be written as w =
D nec W, where w)y € X[y]- For each n € Z and homogeneous v € V, noting that Y (v)pwy
are linearly independent for all A € C, we have w) € (X)[y. This proves the decomposi-
tion Q(X) = (—B)\e(cﬂ(X)p\]. O]

We need projective covers of irreducible V-modules to study non-lowest generated
V-module. The following theorem is due to [Hua09].

Theorem 1.7. For each irreducible V-module X € Mod(V), there exists a projective cover
ex : Px — X (abbreviated as Px when no confusion arises), i.e.,

(a) Pk is a projective V-module in Mod (V).
(b) px is an epimorphism in Mod(V).
(c) If f : Ml — Px is a morphism in Mod(V) such that the composition
ML Py 25 x
is an epimorphism, then f itself is an epimorphism.

Moreover, Px is unique up to isomorphisms in Mod(V).

Remark 1.8. Let X,Y € Mod(V), and assume that X is irreducible. Recall the defini-
tion of [Y : X] from Sec. 1.1. It is well known from the theory of abelian category that
dim Homy (Px,Y) = [Y : X] (cf. [EGNO15, (1.7)]).



Proposition 1.9. Let X be an irreducible V-module. Then its projective cover Pk is singly gener-
ated. Therefore, by Def. 1.3, the conformal weight wt(Px) is well-defined.

Proof. Let w € Px be a nonzero homogeneous vector such that ¢x(w) # 0. Define W to be
the submodule of Px generated by w. Then the composition

We— Px » X (1.1)

is nonzero. Since X is irreducible, (1.1) must be surjective. By Thm. 1.7-(c), it follows that
the inclusion W — Pk is surjective. Hence Px = W. O

Remark 1.10. Let X be an irreducible V-module. Then wt(X) € wt(Px) + N. In particular,
R(wt(Px)) < R(wt(X)).

Proposition 1.11. Let X € Mod(V) be an irreducible V-module. The following conditions are
equivalent:

(a) Px is not lowest generated.
(b) R(wt(Px)) < R(wt(X)).
(c) Px has a composition factor Y € Mod(V) with R(wt(Y)) < R(wt(X)).

Proof. Assume (b). We show that Px is not lowest generated. Suppose instead that P is
lowest generated. By Prop. 1.6, there exists a set of homogeneous vectors {w; € Q(Px) :
i € I} spanning Q(FPx), and for each i € I let W; be the submodule of Px generated by
w;. Then W; is singly lowest generated for each i € I. Since Pk is lowest generated, there
exists an epimorphism

ZWi — Px

el

Hence, for some i, the composition W; — Px — X is nonzero, and therefore surjective
because X is irreducible. By Thm. 1.7-(c), the inclusion W; — P is an epimorphism. It
follows from Rem. 1.4-(b) that Pk is singly lowest generated. Noting that X is a nonzero
quotient V-module of P, it follows from Rem. 1.4-(b) again that wt(X) = wt(Px), contra-
dicting (b). Therefore, (a) holds.
Assume (a). We show that ®(wt(Px)) # R(wt(X)). Suppose instead that R(wt(Px)) =

f(wt(X)). By Rem. 1.10, this forces wt(Px) = wt(X) =: o and hence (Px)[] = Q(Px).
Note that ¢x restricts to a surjective map

x ¢ (P)ja] = X[a)

Since X[, is nonzero, there exists 0 # w € (Px)[,) wWith ¢x(w) # 0. Let W be the sub-
module of Px generated by w. Then the composition W — Px — X is nonzero, hence
surjective because X is irreducible. By Thm. 1.7-(c), the inclusion W — Pk is surjective,
so P is generated by w € (Px)[q) © ©2(Px). Thus Px is lowest generated, contradicting
(a). Therefore, (b) holds.



In general, for any M € Mod(V), the set of weights of M coincides with the set of
weights of its composition factors. Hence

R(wt(Px)) = m§n R(wt(Y))
where Y ranges over all composition factors of Px. Therefore, (b) and (c) are equivalent.
O
Proposition 1.12. The following are equivalent:
(a) There exists Ml € Mod(V) that is not lowest generated.
(b) There exists an irreducible V-module X € Mod(V) such that Px is not lowest generated.

Proof. It suffices to show that (a) implies (b). Assume (a). Suppose instead that Px is
lowest generated for every irreducible X € Mod(V). Let

G:= @XelrrPX

where It is a finite set of representatives of equivalence classes of irreducibles in Mod(V).
Then G is lowest generated and serves as a projective generator of Mod(V). Hence for
any M € Mod(V) there exists n € Z, with an epimorphism G®* — M, implying that M is
lowest generated. Thus every object in Mod(V) would be lowest-generated, contradicting
(@). O

Corollary 1.13. Let p > 2 be an integer, and let VW, denote the triplet W-algebra. Then there
exists a module Ml € Mod(W,) that is not lowest generated.

Proof. Since W, is Ca-cofinite [AMO08], all of the preceding results for a general C>-cofinite
VOA 'V apply. The abelian category structure of Mod()V,) is due to [NT11]. We follow
the terminology of [TW13, Sec. 3.1]. Up to isomorphisms, the irreducible WW,-modules
are X} and X for 1 < s < p. Among them, X is the unique module with the maximal
conformal weight

Wh(X]) = 41p<<2p— 12— (p—1)?).

Let P, denote its projective cover. The socle series of P; is given by
Xy =5(Pr) e Si(Py) e Sa(Pr) = Pr

with S1(P)/So(Py) ~ X7, @ X,/ | and Sy(P")/S1(P; ) ~ X . Since

1 _ 1
@(1 —(p—1)%) = R(wt(X,_1)) < R(wt(X])) = @((229 1) = (p-1)?),
condition (c) of Prop. 1.11 holds, and hence P, is not lowest generated. O

Corollary 1.14. For d € Z., let SE denote the even symplectic fermion VOA. Then there exists
M € Mod(SE}) that is not lowest generated.



Proof. Since SF; is Cy-cofinite [Abe07], all of the preceding results for a general Cs-
cofinite VOA V apply. We follow the terminology of [McR23, Sec. 5]. Noting that
SE ~ Wy [GK99, Kau00], it suffices to consider d > 2 in our proof. Let Xi", X5 de-
note the irreducible W,-modules described in the proof of Cor. 1.13. Recall that SF; is
an extension of W&, As a WE%-module, we have the decomposition

SFf = P XI'® - X (1.2)

Card({1<i<d:g;=—}) even

Up to isomorphisms, the irreducible SF-modules are Xf for i = 1,2 and ¢ = +. By
[McR23, Thm. 5.4], the projective cover P, of X has a composition factor isomorphic to
the vacuum module X;". Moreover, as a W$%-module, we have the equivalence

X ~SFIRX X ® - ®X{)

—~
[—y

3)

Using the decomposition (1.2) and the fusion product X' [ X7? = X['*? in Mod(Ws),
together with the fact that wt(X;") = 0 and wt(X; ) = 1, one shows that wt(X;) = 1
Hence,

wt(X]) =1>0=wt(x]")

By Prop. 1.11, P; is not lowest generated. This completes the proof. O

1.3 Smooth conformal block functors

Let N € Z,, and let X be an N-pointed smooth sphere (with local coordinates), i.e.,

X = (]P)1|$1,"' y TN, - anN)

where x1,- -,z are distinct marked points of P! and each #; is a local coordinate at z;.
Let Wy, -+, Wy € Mod(V) and associate W; to x; for each i.
The space of smooth conformal blocks associated to X and W, - -- , Wy, denoted

(W ® - QWy)
consists of linear functionals
Wi® - @Wy —-C

that are invariant under the actions of V and X [FBZ04, NT05, DGT21].
Following the graphical calculus of conformal blocks [GZ25b, Ch. 1], the picture rep-
resenting 7 (W, ® --- @ Wy) is

WYVs W

()

Wy Wo

illustrated here for N = 7.



Definition 1.15. The contravariant functor

I Mod(V) x -+ x Mod(V) — Vect
(Wi, s Wh) > (W1 @ @Wy)
is called the smooth conformal block functor associated to X. In the language of graphi-

cal calculus, .7;F is also represented as the smooth conformal block functor corresponding
to

illustrated here for N = 7.
Recall that ( is the standard coordinate of C (see Sec. 1.1). Let X, Y € Mod(V) and

N = (P'[o0,0;1/¢, ), (1.4)

where P! is identified with C U {o0} and 1/, ¢ are local coordinates at o, 0. The space of
smooth conformal blocks associated to 9t and X, Y

,@;(xc@mzy*( )

X Y

can be explicitly described by the space of linear functionals { : X® Y — C such that: for
eachv e V,x € X,y €Y, the relation

II)(Y(U, z)a; ® y) = IP(QJ ® Y/(U, Z):U)

holds in C[[z%1]]. Tt is well known (cf. e.g. [NTO05, Prop. 5.9.1] or [GZ25b, Prop. 2.3]) that
Ty (X ®Y) can be identified with Homy (Y, X’) via the isomorphism

Homy(Y,X') = 25 (XQY), Tw—1" (1.5)

where T’ (z ®y) = {x,T(y)).

1.4 Nodal conformal block functors
Let N € Z>2, and let ) be an N-pointed nodal sphere (with local coordinates), i.e.,
9 = (P’xla y TN, - 777N)

where P is a nodal sphere (i.e., a nodal curve of genus 0) with one node, z1,--- ,zxy are
marked points of C' distinct from the nodes and each 7; is a local coordinate at x;. More-
over, we assume that the two irreducible components of P contain x; and z», respectively.
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Let W € Mod(V®?) and W3, --- , Wy € Mod(V). Associate W = (W,Y,,Y_) to x1,z2 via
the default ordering (cf. [GZ25b])

€. {—l—, —} — {xl,ﬂj‘Q}, 6(+) =71, 6(—) = I

and W, to z; foreach 3 <7 < N.
The space of nodal conformal blocks associated to 2) and W, Wj, --- Wy via the
default ordering ¢, denoted

Ty(WRW3;®- - @ Wy)
consists of linear functionals
WOW;® - @Wy - C

that are invariant under the action of V and ) [NT05, DGT21, DGT24].
Following the graphical calculus of conformal blocks [GZ25b, Ch. 1], the picture rep-
resenting 75y (W@ W3 ® - - ® Wy ) is

WYV:a W

illustrated here for N = 7.
In the special case where W = W; @ W, with W, Wy € Mod(V), the picture represent-
ing 95(W®W3 R - @Wy) = yg(wl ® - ®Wy) is given by

WYVS W

()

Wi Wo
illustrated here for N = 7.
Definition 1.16. The contravariant functor
Ty + Mod(V) x - -+ x Mod(V) — Vect

is called the nodal conformal block functor associated to X. In the language of graphical
calculus, 923" is also represented as the nodal conformal block functor corresponding to

11



Consider the 2-pointed nodal sphere (with local coordinates)
B = (B|o,0;1/¢,¢). (1.6)
Here B is the nodal sphere obtained by gluing two copies of
N = (14) = (P!|0,0;1/¢,C)

along the point 0 on the first copy and the point c on the second. The nodal sphere B
carries two marked points, co and 0, both distinct from the node: the point o is inherited
from the first copy of 0N, while 0 is inherited from the second. The local coordinates 1/¢
and ( are likewise inherited from the two copies, respectively. Thus, each irreducible
component of B contains exactly one marked point.

Let W € Mod(V®?). The space of nodal conformal blocks associated to B and W via e

T (W) = y*( )

w
can be explicitly described by the space of linear functionals \p : W — C such that: for
each n € Z,w € W and homogeneous v € V, we have

II)(Y-"- (U)wt(v)—lw) = ll)(Yi (U)wt(v)—lw) (17&1)
Y(Yi(w)pw) =P (Y_(v)pw) =0, ifwt(v) —n—1>0. (1.7b)

Proposition 1.17. For each W € Mod(V®?), Z¥(W), a priori a subspace of W*, is actually
inside W',

It follows that 3 (W’) is a subspace of W for each W € Mod (V®?).

Proof. It follows from [Miy04, Lem. 2.4] that there exists an integer v € N such that any
homogeneous vector w € W with #(wt(w)) > v can be expressed as a finite sum of vectors
of the form Y (u4 ) _jwy and Y_(u_)_pw_, wherel > 1,k > 1, wy,w_ e Wand uy,u_ € V
homogeneous (see also [GZ23, Lem. 3.24] for a detailed explanation). Let{ € J3§(W). By
(1.7b), P vanishes on all w € W with R(wt(w)) > v. Hence, 1 can be regarded as a linear
functional

@ Wiy —C
R(A+p)<v

Thus, 7 (W) embeds into (®p(a+u)<vWr,)*, which is finite dimensional. Conse-
quently, 7 (W) itself is finite dimensional.
Define the action of L(0) on .7 (W) by

(LW, wy = (b, Ly (0)w) = (b, L_(0)w), forallp e Tpf (W), we W

12



where the last equality is due to (1.7a). We claim that .7 (W) is invariant under L(0).
To see this, for each P € FF (W), w € W and homogeneous v € V, noting that L, (0)
commutes with Y, (v)wt(v),l, we have
<L W, Vs (v 1w> <11’ L. (0 ( 1w> <11’ Y (v 1L+ w>
= <IJ,) Y Wt (v)— 1L+ w> <1b L+ ( )Wt (v)— 1’LU> <L 1l’ Y ( )Wt (v)— 1w>

This proves that L(0)y satisfies (1.7a). Clearly, L(0)\ satisfies (1.7b). Thus J (W) is
L(0)-invariant.
The generalized eigenspace decomposition of .7 (W) with respect to L(0) is

N
F(W) = P T (W)py,, where \; e C.

Foreach 1 <i < N, Z3¢(W),,] is contained in Wiy, \,)- Hence

N
Ti(W) c W}, \cW.
i=1
This completes the proof. O

By [DSPS19, Cor. 1.10], every left exact linear functor from a finite C-linear category
to Vect is representable. Therefore, there exists a W-natural linear isomorphism

o : Homyes (A, W) = F% (W) (1.8)

forsome A = (A, Yy, Y_) € Mod(V®?). Itis clear that the A realizing such an isomorphism
as (1.8) are unique up to isomorphisms. We fix such an isomorphism ¢y. We define

w = paplidy) € Tx(A") < A

where the last inclusion is due to Prop. 1.17. The object A is called the (genus 0) nodal
fusion product, and the element w is called the canonical conformal block. The isomor-
phism ¢w = (1.8) is therefore implemented by

oy : Homyes (A, W) = Z5 (W)
[ flw)

where f(w), a priori an element of W, actually lies in .73 (W’). This is because f(w),
viewed as a linear functional W — C, also satisfies a similar property as 1\ does in (1.7).

(1.9)

Proposition 1.18. The canonical conformal block w € A generates A as a VO2-module.

Proof. Let U € Mod(V®?) be the submodule of A generated by w. We claim that U = A.
Suppose, for contradiction, that U # A. Take W = A/U in (1.9). Then (1.9) specializes to

@au : Homyez (A, A/U) = fg((A/U)')
[ flw)

13



Let 7 : A — A/U denote the canonical projection. Since A/U is nonzero, 7 is a nonzero
morphism. However,

pa/p(m) =7(w) =0
contradicting the injectivity of ¢, 5. Therefore, U = A, and hence w generates A. O
Corollary 1.19. (A, Y7) is lowest generated as a weak V-module.

Proof. Let Q(A) denote the lowest weight subspace of (A,Y,). The submodule A_ of
(A,Y_) generated by w is contained in {2(A). By Prop. 1.18, A_ generates (A, Y, ). Thus,
Q(A) also generates (A, Y7). O

2 Smooth and nodal conformal blocks

2.1 A dimension criterion

Proposition 2.1. Let ¢x : Px — X be the projective cover of an irreducible V-module X in
Mod(V). Let Y € Mod(V). If dim Homy(Px,M) = dim Homy (Y, M) for all M € Mod(V),
then Px ~ Y in Mod(V).

Proof. Since
dim Homy (Y, X) = dim Homy(Px, X) = 1

there exists a nonzero morphism a : Y — X. As X is irreducible, « must be an epimor-
phism. By the projectivity of Px, there exists 8 : Px — Y such that px = a0 .

We first show that 3 is surjective. Suppose, to the contrary, that 3 is not surjective.
Then the nonzero quotient V-module Y/3(Px) admits an epimorphism onto some irre-
ducible V-module U.

¢ If U # X, then dim Homy (Px, U) = 0. However, since U is a quotient of Y/3(FPx), we
have dim Homy(Y, U) > 0, contradicting our assumption.

¢ [f U ~ X, then the composition
Y - Y/B(Px) »U~X (2.1)

yields a nonzero morphism v : Y — X. We claim that «, 7 are linearly independent
in Homy (Y, X). To see this, suppose instead that they are linearly dependent. Then,
up to a nonzero scalar multiplication, ¢x = « o 3 coincides with

P Sy - Y/B(P) »U~X
which is zero, a contradiction. Hence «, 7y are linearly independent, and so
dim Homy(Y,X) > 2 > 1 = dim Homy (P, X)

which is again a contradiction.
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Therefore, 3 must be surjective.
We now show that £ is injective. Suppose otherwise. Then the transpose of

«

P byax
is the sequence
xSy 2 p 2.2)
where o is injective and 3! is injective but not surjective. Thus we may regard (2.2) as
X cVY ¢ P

It follows that the composition series of Py is strictly longer than that of Y. Hence there
exists an irreducible V-module W such that [Y' : W] < [Pg : W], equivalently,

dim Homy (Pyw, Y') < dim Homy ( Py, P%)
(See Rem. 1.8). This implies
dim Homy (Y, Pjy) # dim Homy (Px, Pyy)

contradicting our assumption. Therefore, 3 must be injective, and we conclude that 3 is
an isomorphism, i.e., Px ~ Y. O

2.2 Non-equivalence of nodal and smooth conformal block functors

Recall the 2-pointed smooth sphere M = (1.4) = (P!|w0,0;1/¢,() and the 2-pointed
nodal sphere B = (1.6) = (B ‘oo, 0;1/¢, (), together with their conformal block functor
Tt » T described in Sec. 1.3 and 1.4.

Theorem 2.2. Assume that there exists a module in Mod (V) that is not lowest generated. Then
there exist X, Y € Mod(V) such that

dim % (X®Y) # dim Z3 (X Q Y). (2.3)

The picture for (2.3) is

dimg*< ) ;édimg*( )

X Y X Y

Proof. Suppose, to the contrary, that we have

dim 3 (X®Y) = dim 7 (X® Y), forall X, Y € Mod(V) (2.4)

15



By Prop. 1.12, there exists an irreducible W € Mod(V) such that Py is not lowest gener-
ated. By (1.8), we have

dim 3 (U’ ® Py) = dim Homye: (A, U® Pj), for all U € Mod (V). (2.5)

By [DSPS19, Cor. 1.10], every left exact linear functor from a finite C-linear category to
Vect is representable. Thus, there exists D € Mod (V) such that we have a U-natural linear
isomorphism

Y : Homy (D, U) => Homye: (A, U® Pjy). 2.6)
We fix such an isomorphism #y. It follows by (2.5) and (2.6) that
dim 73 (U’ ® Pw) = dim Homy (D, U), for all U € Mod (V). (2.7)
On the other hand, by (1.5), 7 (U’ ® Py) can be identified with Homy (P, U), so
dim 51 (U’ ® Pw) = dim Homy ( Py, U), for all U € Mod(V). (2.8)

By (2.4), (2.7) and (2.8), we have dim Homy (D, U) = dim Homy (P, U) for all U € Mod(V).
This together with Prop. 2.1 implies that D >~ Pyy.

We claim that D is lowest generated. If this claim is true, then it will contradict our
assumption that Py is not lowest generated. This completes our proof. To see the claim,
let

& € Homye: (A, D ® Py)

be the element such that & = ¢p(idp). The isomorphism ¢y = (2.6) is therefore imple-
mented by
Yy : Homy(D, U) = Homye:(A, U® Py) 2.9)
fo (f®idpy) o & |
We view « as a linear map
:ARQPy—D, aQz— <5c(a),:v>.

Since & intertwines the actions of V®?, « satisfies the following property: for each v € V,
a € A and z € Py, the relations

a(Yi(v,2)a®x) = Yp(v, 2)a(a® x) (2.10a)
x(Y_(v,2)a®x) = a(a @ Y5, (v, 2)x) (2.10b)

hold in C[[2*1]]. Suppose that « is not surjective. By (2.10a), the image x(A ® Py) is a
proper left V-submodule of D. Set

U=D/au(A® Py) (2.11)
in (2.9). Then U is nonzero and (2.9) takes the form

Homy (D, D/x(A ® Py)) = Homys: (A, (D/a(A ® Pw)) ® Pyy)

fro (f®idpy) 0 & -
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The map (f®idp; ) o &, viewed as a linear map A® Pw — D/x(A® Pw), is equal to f o a.
Therefore, the image of the nonzero canonical projection 7 : D — D/x(A ® Pw) under
(2.12) is zero, contradicting the injectivity of (2.12). Therefore, & must be surjective.

Let Q(A) denote the lowest weight subspace of (A, Y ), and let (D) denote the lowest
weight subspace of D. By (2.10a), we have

a(Q(A) ® Pw) < Q(D)

Moreover, by Cor. 1.19, Q(A) generates A as a left V-module. Since « is surjective and sat-
isfies (2.10a), it follows that D is generated by «(Q2(A)® Py). Consequently, D is generated
by (D), and hence is lowest generated. This completes the proof. O

Remark 2.3. In the proof of Thm. 2.2, the module DD is in fact the fusion product of

QM

and « is the canonical conformal block of D [GZ23]:

The surjectivity of « is precisely the partial injectivity property of canonical conformal
blocks (cf. [GZ23, Ch. 3] or [GZ24, Rem. 3.17]). Nevertheless, since we do not assume
that the reader is familiar with the notion of fusion products introduced in [GZ23], we
provide here a self-contained proof.

Remark 2.4. Assume that there exists a module in Mod(V) that is not lowest generated.
Let N > 2. By Thm. 2.2 and propagation of conformal blocks [Zhu94, Cod19, DGT21,
(GZ23], there exist X, Y € Mod(V) such that

VV \% VV A%
V. v V. v
dim .7* # dim 7% (2.13)
X Y X Y

In (2.13), both spheres carry N marked points, partitioned into two groups. The first
group consists of two blue marked points, co and 0, inherited from 91, B respectively. The
second group consists of N — 2 purple marked points, all distinct from the nodes, each
associated with a copy of V.

Though the curves are not stable, they are affine when the marked points are removed.
Therefore, the proof of propagation in [DGT21, Thm. 6.2] (using Riemann-Roch theorem)
still applies to the present situation.

We conclude that:
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(@) The spaces of conformal blocks associated to X,Y,V,--- |V do not form a vector
bundle on Mg v for N > 4.

(b) The sheaf of coinvariants associated to X, Y, V,--- |V on My x is not locally free for
N = 4.

(c) The two conformal block functors (cf. Def. 1.15 and 1.16) corresponding to

are not equivalent.

2.3 The end is not isomorphic to the mode transition algebra

The mode transition algebra 2 was first introduced in [DGK25b]. 2l is a quotient of
X® Y by a V x V-invariant subspace, where X,Y € Mod(V). Thus, 2 is an object in
Mod(V®?). Moreover, 2 contains a distinguished element, denoted by 1.

Recall the nodal conformal block functor 7} and the smooth conformal block functor
Ty described in Sec. 1.3 and 1.4.

Theorem 2.5 ([DGK25b, Prop. 3.3]). Let X, Y € Mod(V). The linear map

Homye: (A, X' @Y') ~ 73 (X®Y)
T—T(1
is an isomorphism.

Remark 2.6. By [DGK25b, Prop. 3.3] and propagation of conformal blocks (see Rem. 2.4
for details), there are natural equivalences

A
9*( @) = 9*( ) =I5 (X®Y) (2.14)
X Y X

Y

The space of smooth conformal blocks on the left hand side of (2.14) can be identified
with Homye: (U, X' ® Y') (see [GZ25b, Prop. 2.3] for details). Therefore, Thm. 2.5 follows.

The following remark indicates the relation between the mode transition algebra 2
and the nodal fusion product A. It will not be used in this paper.

Remark 2.7. By Thm. 2.5, the mode transition algebra 2 represents the nodal conformal
block functor. Recall from Sec. 1.4 that the nodal fusion product A represents the nodal
conformal block functor. Thus, 2l ~ A as objects of Mod(V®?).
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On the other hand, we consider the end
E = f M®cM € Mod(V®?).
MeMod(V)

For each M € Mod(V), the dinatural transformation of E gives a morphism ¢y : E —
M ® M’ in Mod(V®?).
Proposition 2.8. Let X, Y € Mod(V). We have an isomorphism

Homye: (E, X' ® Y’) ~ 9;;{ X®Y) (2.15)
Proof. By [FSS20, Cor. 2.9], the linear map

Homy (Y, X') — Homye:(E, X' ® Y')

2.16
T — (idgy @ T") o oy ( )

is an isomorphism. See [GZ25a, GZ25b] for details. By (1.5) and (2.16), we have the
isomorphism (2.15). O

Theorem 2.9. Assume that there exists a module in Mod (V) that is not lowest generated. Then
E % 2 in Mod(V®?2).

Proof. By Thm. 2.2, there exist X, Y € Mod(V) such that

dim Z (X ®Y) # dim Z5 (X @ Y). (2.17)
By Thm. 2.5, we have an isomorphism

Homye: (%, X' @ Y') ~ Z2(X®Y). (2.18)

Suppose, to the contrary, that E ~ 2 in Mod(V®?). By Prop. 2.8 and (2.18), there exists an
isomorphism

In(XRY) ~ I3 (X®Y).

contradicting (2.17). Therefore, E % 2 in Mod(V®?). O]

References

[Abe07]  Toshiyuki Abe. A Z:-orbifold model of the symplectic fermionic vertex operator superalgebra.
Mathematische Zeitschrift, 255(4):755-792, 2007 .

[AMO8] Drazen Adamovi¢ and Antun Milas. On the triplet vertex algebra W(p). Adv. Math., 217(6):2664—
2699, 2008.

[BEM91]  A. Beilinson, B. Feigin, and B. Mazur. Introduction to algebraic field theory on curves. Unpub-
lished, 1991.

[Cod19]  Giulio Codogni. Vertex algebras and teichmiiller modular forms. arXiv:1901.03079, 2019.

[DGK24] Chiara Damiolini, Angela Gibney, and Daniel Krashen. Morita equivalences for Zhu’s algebra.
Preprint, arXiv:2403.11855 [math.RT] (2024), 2024.

[DGK25a] Chiara Damiolini, Angela Gibney, and Daniel Krashen. Conformal blocks on smoothings via
mode transition algebras. Comm. Math. Phys., 406(6):Paper No. 131, 58, 2025.

19



[DGK25b]

[DGT21]
[DGT24]
[DSPS19]
[DW25]
[EGNO15]
[FBZ04]
[FGR22]
[FSS20]
[GK99]
[GR15]
[GZ23]
[GZ24]
[GZ25a]

[GZ25Db]
[Hua09]

[Kau91]

[Kau95]
[Kau00]
[Li02]

[Li22]
[McR23]

[Miy04]

[MNT10]

[NTO5]

[NT11]

Chiara Damiolini, Angela Gibney, and Daniel Krashen. Factorization presentations. In Higher
dimensional algebraic geometry—a volume in honor of V. V. Shokurov, volume 489 of London Math.
Soc. Lecture Note Ser., pages 163-191. Cambridge Univ. Press, Cambridge, 2025.

Chiara Damiolini, Angela Gibney, and Nicola Tarasca. Conformal blocks from vertex algebras
and their connections on ﬂg,n. Geom. Topol., 25(5):2235-2286, 2021.

Chiara Damiolini, Angela Gibney, and Nicola Tarasca. On factorization and vector bundles of
conformal blocks from vertex algebras. Ann. Sci. Ec. Norm. Supér. (4), 57(1):241-292, 2024.
Christopher L. Douglas, Christopher Schommer-Pries, and Noah Snyder. The balanced tensor
product of module categories. Kyoto J. Math., 59(1):167-179, 2019.

Chiara Damiolini and Lukas Woike. Modular functors from conformal blocks of rational vertex
operator algebras. Preprint, arXiv:2507.05845 [math.QA] (2025), 2025.

Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor Categories, volume 205
of Mathematical Surveys and Monographs. American Mathematical Society, 2015.

Edward Frenkel and David Ben-Zvi. Vertex algebras and algebraic curves, volume 88 of Mathematical
Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2004.

V. Farsad, A.M. Gainutdinov, and I. Runkel. The symplectic fermion ribbon quasi-hopf algebra
and the sl(2,z)-action on its centre. Advances in Mathematics, 400:108247, 2022.

Jiirgen Fuchs, Gregor Schaumann, and Christoph Schweigert. Eilenberg-Watts calculus for finite
categories and a bimodule Radford S* theorem. Trans. Amer. Math. Soc., 373(1):1-40, 2020.
Matthias R. Gaberdiel and Horst G. Kausch. A local logarithmic conformal field theory. Nuclear
Physics B, 538(3):631-658, 1999.

Azat M. Gainutdinov and Ingo Runkel. Symplectic fermions and a quasi-hopf algebra structure
on U;sl(2). Journal of Algebra, 476, 03 2015.

Bin Gui and Hao Zhang. Analytic conformal blocks of C»-cofinite vertex operator algebras I:
Propagation and dual fusion products. arXiv:2305.10180, 2023.

Bin Gui and Hao Zhang. Analytic conformal blocks of Cs-cofinite vertex operator algebras II:
Convergence of sewing and higher genus pseudo-g-traces. arXiv:2411.07707, 2024.

Bin Gui and Hao Zhang. Analytic conformal blocks of Ca-cofinite vertex operator algebras III:
The sewing-factorization theorems. arXiv:2503.23995, 2025.

Bin Gui and Hao Zhang. How are pseudo-g-traces related to (co)ends? arXiv:2508.0453, 2025.

Yi-Zhi Huang. Cofiniteness conditions, projective covers and the logarithmic tensor product
theory. J. Pure Appl. Algebra, 213(4):458—475, 2009.

Horst G. Kausch. Extended conformal algebras generated by a multiplet of primary fields.
Physics Letters B, 259(4):448-455, 1991.

Horst G. Kausch. Curiosities at ¢ = —2, 1995.

Horst Kausch. Symplectic fermions. Nuclear Physics B, 583(3):513-541, 2000.

Haisheng Li. Regular representations of vertex operator algebras. Commun. Contemp. Math.,
4(4):639-683, 2002.

Haisheng Li. Regular representations and A, (V)-A,, (V) bimodules. arXiv:2205.05481, 2022.
Robert McRae. Deligne tensor products of categories of modules for vertex operator algebras.
2304.14023v1, 2023.

Masahiko Miyamoto. Modular invariance of vertex operator algebras satisfying C>-cofiniteness.
Duke Math. |., 122(1):51-91, 2004.

Atsushi Matsuo, Kiyokazu Nagatomo, and Akihiro Tsuchiya. Quasi-finite algebras graded by
Hamiltonian and vertex operator algebras. In Moonshine: the first quarter century and beyond, vol-
ume 372 of London Math. Soc. Lecture Note Ser., pages 282-329. Cambridge Univ. Press, Cambridge,
2010.

Kiyokazu Nagatomo and Akihiro Tsuchiya. Conformal field theories associated to regular chiral
vertex operator algebras. I: Theories over the projective line. Duke Math. |., 128(3):393-471, 2005.
Kiyokazu Nagatomo and Akihiro Tsuchiya. The triplet vertex operator algebra w(p) and the
restricted quantum group at root of unity. In Exploring New Structures and Natural Constructions

20



[Run14]

[TUY89]

[TW13]

[Uen97]

[Uen08]

[Zhu94]

[Zhu96]

in Mathematical Physics, volume 61 of Advanced Studies in Pure Mathematics, pages 1-49. American
Mathematical Society, 2011.

Ingo Runkel. A braided monoidal category for free super-bosons. Journal of Mathematical Physics,
55(4):041702, 2014. 59 pp.

Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada. Conformal field theory on universal fam-
ily of stable curves with gauge symmetries. Integrable systems in quantum field theory and
statistical mechanics, Proc. Symp., Kyoto/Jap. and Kyuzeso/Jap. 1988, Adv. Stud. Pure Math.
19, 459-566 (1989)., 1989.

Akihiro Tsuchiya and Simon Wood. The tensor structure on the representation category of the
W, triplet algebra. Journal of Physics A General Physics, 46, 10 2013.

Kenji Ueno. Introduction to conformal field theory with gauge symmetries. In Geometry and
physics (Aarhus, 1995), volume 184 of Lecture Notes in Pure and Appl. Math., pages 603-745. Dekker,
New York, 1997.

Kenji Ueno. Conformal field theory with gauge symmetry, volume 24 of Fields Institute Monographs.
American Mathematical Society, Providence, RI; Fields Institute for Research in Mathematical
Sciences, Toronto, ON, 2008.

Yongchang Zhu. Global vertex operators on Riemann surfaces. Commun. Math. Phys., 165(3):485—-
531, 1994.

Yongchang Zhu. Modular invariance of characters of vertex operator algebras. J. Amer. Math.
Soc., 9(1):237-302, 1996.

YAU MATHEMATICAL SCIENCES CENTER AND DEPARTMENT OF MATHEMATICS, TSINGHUA
UNIVERSITY, BEIJING, CHINA.
E-mail: zhanghao1999math@gmail.com h-zhang21@mails.tsinghua.edu.cn

21



	Introduction
	Preliminaries
	Notation
	Non-lowest generated V-modules in Mod(V)
	Smooth conformal block functors
	Nodal conformal block functors

	Smooth and nodal conformal blocks
	A dimension criterion
	Non-equivalence of nodal and smooth conformal block functors
	The end is not isomorphic to the mode transition algebra

	References

