How are (co)ends related to pseudo-traces?

Bin Gui Tsinghua University

October 2025, Pascal Institute
Joint work with Hao Zhang
arXiv: 2503.23995 2508.04532

Modular invariance

- A central theme in vertex operator algebras (VOAs) is modular invariance.
- An early breakthrough in this topic is Zhu's theorem (96): Assume that $\mathbb V$ is " C_2 -cofinite and rational". Then the set of all $\mathrm{Tr}_\mathbb M q^{L_0-\frac{c}{24}}$ span a $SL(2,\mathbb Z)$ -invariant space (where $\mathbb M\in\mathrm{Mod}(\mathbb V)$).
- More generally: Let Y(v,z) denote the vertex operators (where $v \in \mathbb{V}$). Then $(v,\tau) \in \mathbb{V} \times \mathbb{H} \mapsto \mathrm{Tr}_{\mathbb{M}} Y(v,1) q_{\tau}^{L_0 \frac{c}{24}}$ (over all $\mathbb{M} \in \mathrm{Irr}$) span an $SL(2,\mathbb{Z})$ -invariant space with dimension $\#\mathrm{Irr}(\mathbb{V})$. Here $q_{\tau} = e^{2\pi \mathbf{i} \tau}$.
- Note: " C_2 -cofinite" is a finiteness condition ensuring, e.g., that $\operatorname{Mod}(\mathbb{V})$ is a finite abelian category. We always assume C_2 -cofinite in the talk. "Rational" means that $\operatorname{Mod}(\mathbb{V})$ is semi-simple.

Modular invariance beyond rationality

- However, this modular invariance does not hold when rationality is dropped: $\mathrm{Tr}_{\mathbb{M}}q_{ au}^{L_0-c/24}$ is a fractional power of $q_{ au}=e^{2\mathbf{i}\pi\tau}$. However, without rationality (e.g. triplet algebras $\mathcal{W}_p=\mathcal{W}_{1,p}$ and their generalizations $\mathcal{W}_{q,p}$, symplectic fermions $SF(d)^+$), an $SL(2,\mathbb{Z})$ action of $\mathrm{Tr}_{\mathbb{M}}q_{ au}^{L_0-c/24}$ will contain factors such as $au=\frac{1}{2\mathbf{i}\pi}\log q_{ au}$.
- To rescue modular invariance, Miyamoto (04) introduced the **pseudo-**q-trace construction $(v,\tau) \in \mathbb{V} \times \mathbb{H} \mapsto \mathrm{Tr}_{\mathbb{M}}^{\omega} Y(v,1) q_{\tau}^{L_0 \frac{c}{24}}$. For $\mathbb{M} \in \mathrm{Mod}(\mathbb{V})$, a pseudo-trace $\mathrm{Tr}_{\mathbb{M}}^{\omega}$ is a symmetric linear functional on a suitable subalgebra of $\mathrm{End}(\mathbb{M})$. This was later simplified by Arike-Nagatomo (11).
- Miyamoto showed that the pseudo-q-traces form an $SL(2,\mathbb{Z})$ -invariant space whose dimension is characterized by the higher Zhu's algebras of \mathbb{V} .

Goal of the talk

 In the categorical and TFT approach, genus-1 data and modular invariance are understood in terms of ends and coends.

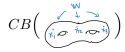
TQFT	ends and coends
VOA	pseudo-traces

The goal of this talk is to explain how these two approaches are related under the framework of VOA conformal blocks and their sewing-factorization property.

 In the first part of the talk, I will explain how (co)ends naturally appear in VOA conformal blocks. In the second part, I will relate them to pseudo-traces.

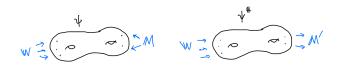
Conformal blocks (CB)

- Recall that $\mathbb V$ is always a C_2 -cofinite $\mathbb N$ -graded VOA.
- Fix a N-pointed compact Riemann surface with local coordinates $\mathfrak{X} = (C; x_1, \cdots, x_N; \eta_1, \cdots, \eta_N).$
 - C is a (possibly disconnected) compact Riemann surface with distinct marked points x_1, \ldots, x_N . η_i is a local coordinate at x_i (i.e., an injective holomorphic function on a neighborhood of x_i sending x_i to 0).
- Associate $\mathbb{W} \in \operatorname{Mod}(\mathbb{V}^{\otimes N})$ to the *ordered* marked points x_1, \dots, x_N .
- A conformal block (CB) is a linear map $\psi : \mathbb{W} \to \mathbb{C}$ invariant under the action defined by \mathfrak{X} and \mathbb{V} (Zhu 94, Frenkel&Ben-Zvi 04). The spaces of conformal blocks is denoted by $CB(\mathfrak{X}, \mathbb{W})$, or



Pictorial illustraction of CB

- Suppose that $\mathfrak X$ has two groups of marked points x_1,\ldots,x_N and y_1,\ldots,y_K . We can associate $\mathbb W\in\operatorname{Mod}(\mathbb V^{\otimes N})$ to x_1,\ldots,x_N in order, and associate $\mathbb M\in\operatorname{Mod}(\mathbb V^{\otimes K})$ to y_1,\ldots,y_K in order.
 - This means associating $\mathbb{W} \otimes \mathbb{M}$ to $x_1, \dots, x_N, y_1, \dots, y_K$.
- A CB $\psi : \mathbb{W} \otimes \mathbb{M} \to \mathbb{C}$ can equivalently be viewed as a linear map $\psi^{\sharp} : \mathbb{W} \to \overline{\mathbb{M}'}$ satisfying certain intertwining property.



• \mathbb{M}' is the contragredient of \mathbb{M} , and $\overline{\mathbb{M}'}$ is the algebraic completion of \mathbb{M} . So $\overline{\mathbb{M}'} = \mathbb{M}^*$.

The fusion product $\boxtimes_{\mathfrak{X}} \mathbb{W}$ and the canonical CB $\gimel_{\mathfrak{X}}$

- The CB functor is left exact.
- Any left exact functor from a finite \mathbb{C} -linear category to $\mathcal{V}ect$ is representable (Douglas-SchommerPries-Snyder 19). So, fixing $\mathbb{W} \in \operatorname{Mod}(\mathbb{V}^{\otimes N})$, there exists $\boxtimes_{\mathfrak{X}} \mathbb{W} \in \operatorname{Mod}(\mathbb{V}^{\otimes K})$, called the fusion product of \mathbb{W} along \mathfrak{X} , yielding an equivalence of linear functors $\mathbb{M} \in \operatorname{Mod}(\mathbb{V}^{\otimes K}) \to \mathcal{V}ect$:

$$CB\left(\mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}}\right) \simeq \operatorname{Hom}_{\mathbb{V}\otimes K}\left(\mathbb{Z}_{\mathfrak{X}}\mathbb{W},\mathbb{M}\right)$$

- The element $\exists_{\mathfrak{X}} \in CB(\bigvee_{\mathbb{W}} \in \mathbb{C} \otimes \mathbb{C})$ corresponding to $id \in \operatorname{Hom}_{\mathbb{V} \otimes K}(\boxtimes_{\mathfrak{X}} \mathbb{W}, \boxtimes_{\mathfrak{X}} \mathbb{W})$ is called the **canonical CB**.
 - $J_{\mathfrak{X}}$ can be viewed as a linear map $J_{\mathfrak{X}}^{\sharp}: \mathbb{W} \to \overline{\boxtimes_{\mathfrak{X}} \mathbb{W}}$.

Examples of fusion products

$$\bullet \quad \bigvee \rightarrow \left(\cdot \quad \cdot \right) \rightarrow \quad \boxtimes_{Li} \bigvee \qquad \text{Li}$$

$$\bullet \quad \bigodot_{\mathcal{N}} \xrightarrow{\rightarrow} \ ^{\boxtimes_{\mathcal{N}} \mathbb{C}} \qquad \text{The coevaluation object } \int_{\mathbb{M} \in \mathrm{Mod}(\mathbb{V})} \mathbb{M} \otimes_{\mathbb{C}} \mathbb{M}'$$

•
$$\searrow$$
 \searrow \searrow \searrow \searrow Lyubashenko construction

$$\boxtimes_{\mathrm{HLZ}} \Big(\int_{\mathbb{M} \in \mathrm{Mod}(\mathbb{V})} \mathbb{M} \otimes_{\mathbb{C}} \mathbb{M}' \Big)$$

Ends and coends

Let \mathscr{D} be a category. Let $F: \operatorname{Mod}(\mathbb{V}^{\otimes N}) \times \operatorname{Mod}(\mathbb{V}^{\otimes N}) \to \mathscr{D}$ be a covariant bi-functor. Let $A \in \mathscr{D}$.

Definition

A family of morphisms $\varphi_{\mathbb{W}}: A \to F(\mathbb{W}, \mathbb{W}')$ (for all $\mathbb{W} \in \operatorname{Mod}(\mathbb{V}^{\otimes N})$) is called **dinatural** if for any $\mathbb{M} \in \operatorname{Mod}(\mathbb{V}^{\otimes N})$ and $T \in \operatorname{Hom}_{\mathbb{V}^{\otimes N}}(\mathbb{M}, \mathbb{W})$, the following diagram commutes:

$$A \xrightarrow{\varphi_{\mathbb{W}}} F(\mathbb{W}, \mathbb{W}')$$

$$\downarrow^{\varphi_{\mathbb{M}}} \qquad \qquad \downarrow^{F(\mathrm{id}, T^{\mathrm{t}})}$$

$$F(\mathbb{M}, \mathbb{M}') \xrightarrow{F(T, \mathrm{id})} F(\mathbb{W}, \mathbb{M}')$$

Reversing arrows defines dinatural transformation $F(\mathbb{W}',\mathbb{W}) \to A$.

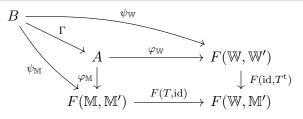
◆□ ▶ ◆□ ▶ ◆■ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Bin Gui

Ends and coends

Definition

A dinatural transformation $\varphi_{\mathbb{W}}: A \to F(\mathbb{W}, \mathbb{W}')$ (for all $\mathbb{W} \in \operatorname{Mod}(\mathbb{V}^{\otimes N})$) is called an **end** if it satisfies the universal property that for any dinatural transformations $\psi_{\mathbb{W}}: B \to F(\mathbb{W}, \mathbb{W}')$ there is a unique $\Gamma \in \operatorname{Hom}_{\mathscr{D}}(B, A)$ such that $\psi_{\mathbb{W}} = \varphi_{\mathbb{W}} \circ \Gamma$ for all \mathbb{W} . We write $A = \int_{\mathbb{W} \in \mathrm{Mod}(\mathbb{W} \otimes N)} F(\mathbb{W}, \mathbb{W}')$.



Reversing arrows defines **coend** $F(\mathbb{W}',\mathbb{W}) \to A = \int_{-\infty}^{\mathbb{W} \in \operatorname{Mod}(\mathbb{V}^{\otimes N})} F(\mathbb{W}') dt$

The fusion product $\bigcirc \stackrel{\rightarrow}{\rightarrow} \boxtimes_n \mathbb{C}$ is an end

• Since CB $\bigg(\bigcup_{\leftarrow \Upsilon} \to X \bigg) = \operatorname{Hom}_{\mathbb{V}}(\mathbb{Y}, \mathbb{X})$, $\boxtimes_{\mathfrak{M}}\mathbb{C}$ is the unique object in $\operatorname{Mod}(\mathbb{V}^{\otimes 2}) \simeq \operatorname{Mod}(\mathbb{V}) \otimes^{\operatorname{Del}} \operatorname{Mod}(\mathbb{V})$ (equivalence due to McRae 21, RHS denotes Deligne product) giving a natural equivalence $\operatorname{Hom}_{\mathbb{V}}(\mathbb{Y},\mathbb{X}) \simeq \operatorname{Hom}_{\mathbb{V}\otimes 2}(\boxtimes_{\mathfrak{M}}\mathbb{C},\mathbb{X}\otimes_{\mathbb{C}}\mathbb{Y}')$

- Setting $\mathbb{X} = \mathbb{Y} = \mathbb{M} \in \operatorname{Mod}(\mathbb{V})$, the identity morphism $\operatorname{id}_{\mathbb{M}}$ corresponds to a $\mathbb{V}^{\otimes 2}$ -module morphism $\pi_{\mathbb{M}}: \boxtimes_{\mathfrak{N}}\mathbb{C} \to \mathbb{M} \otimes_{\mathbb{C}} \mathbb{M}'$.
- The family $(\pi_{\mathbf{M}})_{\mathbf{M}\in \mathrm{Mod}(\mathbf{V})}$ of morphisms is dinatural. Moreover, it is an end by a result on finite linear categories (Fuchs-Schaumann-Schweigert 16). Thus

$$\boxtimes_{\mathfrak{N}} \mathbb{C} \simeq \int_{\mathbb{M} \in \operatorname{Mod}(\mathbb{V})} \mathbb{M} \otimes_{\mathbb{C}} \mathbb{M}'$$

The sewing-factorization (SF) theorem

View the canonical $\mathbb{J}_{\mathfrak{X}} \in CB(\mathbb{W} \xrightarrow{\mathbb{Z}} \mathbb{Z}_{\mathfrak{X}} \mathbb{W})$ as a linear map $\mathbb{J}_{\mathfrak{X}}^{\sharp} : \mathbb{W} \to \overline{\mathbb{Z}_{\mathfrak{X}}} \overline{\mathbb{W}}.$

Theorem (SF theorem, G.-Zhang arXiv:2503.23995)

We have a linear isomorphism (called the SF isomorphism)

$$CB(\bigvee_{\mathbf{X}}\bigvee_{\mathbf{X}}) \xrightarrow{\simeq} CB(\bigvee_{\mathbf{X}}\bigvee_{\mathbf{X}}\bigvee_{\mathbf{X}}\bigvee_{\mathbf{X}})$$

defined by $\phi^{\sharp} \mapsto \phi^{\sharp} \circ J_{\mathfrak{X}}^{\sharp}$

• The well-definedness of this map (proved by G.-Zhang in arXiv:2411.07707) means that $\phi^{\sharp} \circ \mathbb{J}_{\mathfrak{X}}^{\sharp}$ is convergent and is also a CB.

Transitivity of fusion products as an SF theorem

 The transitivity of fusion products is an easy consequence and an equivalent form of the previous SF theorem.

Theorem (G.-Zhang arXiv:2503.23995)

We have an isomorphism $\boxtimes_{\mathfrak{Z}} \mathbb{W} \simeq \boxtimes_{\mathfrak{Y}} (\boxtimes_{\mathfrak{X}} \mathbb{W})$, pictorially

8

$$\mathbb{W} \stackrel{\stackrel{\boxtimes_{\mathcal{X}}}{\longrightarrow}}{\longrightarrow} \mathbb{Q}_{\mathcal{Y}}(\mathbb{Q}_{\mathcal{X}}\mathbb{W})$$

and, accordingly, $\gimel_3^\sharp \simeq \gimel_{\mathfrak{Y}}^\sharp \circ \gimel_{\mathfrak{X}}^\sharp$

Application of the transitivity of fusion product

$$\mathsf{Recall} \boxtimes_{\mathfrak{N}} \mathbb{C} \simeq \int_{\mathbb{M} \in \mathrm{Mod}(\mathbb{V})} \mathbb{M} \otimes_{\mathbb{C}} \mathbb{M}'.$$

• Applying $\boxtimes_{HLZ}: \operatorname{Mod}(\mathbb{V}^{\otimes 2}) \to \operatorname{Mod}(\mathbb{V})$ to both sides of this isomorphism, we get $\boxtimes_{HLZ}(\boxtimes_{\mathfrak{N}}\mathbb{C}) \simeq \mathbb{L}$ where $\mathbb{L} \in \operatorname{Mod}(\mathbb{V})$ is the Lyubashenko construction (Brochier-Woike 22) defined by

$$\mathbb{L} := \boxtimes_{\mathrm{HLZ}} \Big(\int_{\mathbb{M} \in \mathrm{Mod}(\mathbb{V})} \mathbb{M} \otimes_{\mathbb{C}} \mathbb{M}' \Big)$$

• When $\mathbb V$ is strongly-finite and rigid, then $\operatorname{Mod}(\mathbb V)$ is modular (McRae 21). Then $\int_{\mathbb M\in\operatorname{Mod}(\mathbb V)}\mathbb M\otimes_{\mathbb C}\mathbb M'\simeq\int^{\mathbb M\in\operatorname{Mod}(\mathbb V)}\mathbb M'\otimes_{\mathbb C}\mathbb M$. Since $\boxtimes_{\operatorname{HLZ}}$ is a left adjoint and hence commutes with coends, we get $C^{\mathbb M\in\operatorname{Mod}(\mathbb V)}$

$$\mathbb{L} \simeq \int^{\mathbb{M} \in \operatorname{Mod}(\mathbb{V})} \mathbb{M}' \boxtimes_{\operatorname{HLZ}} \mathbb{M}$$

where the RHS is the Lyubashenko coend (Lyubashenko 96).

Application of the transitivity of fusion product

From the previous page, we have $\boxtimes_{\mathrm{HLZ}}(\boxtimes_{\mathfrak{N}}\mathbb{C}) \simeq \mathbb{L}$.

• The transitivity of fusion products implies $\boxtimes_{\mathfrak{T}} \mathbb{C} \simeq \boxtimes_{\mathrm{HLZ}} (\boxtimes_{\mathfrak{N}} \mathbb{C})$:

Therefore, $\boxtimes_{\mathfrak{T}} \mathbb{C} \simeq \mathbb{L}$.

• By the definition of $\boxtimes_{\mathfrak{T}} \mathbb{C}$, for $\mathbb{M} \in \operatorname{Mod}(\mathbb{V})$ we have natural equivalence $CB((\nwarrow)) \xrightarrow{M}) \simeq \operatorname{Hom}_{\mathbb{V}}(\boxtimes_{\mathfrak{T}}\mathbb{C}, \mathbb{M}).$ Therefore:

Corollary (G.-Zhang arXiv:2503.23995)

The SF isomorphism yields a natural linear isomorphism

$$CB((\nwarrow) \xrightarrow{M}) \simeq \operatorname{Hom}_{\mathbb{V}}(\mathbb{L}, \mathbb{M})$$

The isomorphism $CB(\bigcirc \bigcirc) \stackrel{\mathbb{M}}{\longrightarrow}) \simeq \operatorname{Hom}_{\mathbb{V}}(\mathbb{L},\mathbb{M})$

- In TFT, the torus modular functors are defined by $\operatorname{Hom}_{\mathbb V}(\mathbb L,\mathbb M)$. The categorical S-transform is defined by the Hopf pairing of $\mathbb L$.
- Open problem (Gainutdinov-Runkel, Creutzig-Gannon, etc.): Prove that at least when \mathbb{V} is strongly-finite and rigid, the categorical S-transform agrees with the **modular** S-transform on $CB(\bigcirc \stackrel{M}{\longrightarrow})$ (defined by $\tau \mapsto -\frac{1}{\tau}$).
- This conjecture is important for the construction of logarithmic full CFT, as shown by Huang-Kong in the rational case.
- The first step toward proving this conjecture must be proving $CB(\ \bigcirc \) \cong \operatorname{Hom}_{\mathbb{V}}(\mathbb{L},\mathbb{M})$. Our work is the first one establishing such an isomorphism.

We now turn to the second part, relating (co)ends and pseudo-traces.

- The notion of pseudo-traces relies heavily on associative algebra structures.
- We will relate (co)ends with pseudo-traces by showing that the end $\boxtimes_{\mathfrak{M}}\mathbb{C}\simeq \int_{\mathbb{M}\in\mathrm{Mod}(\mathbb{V})}\mathbb{M}\otimes_{\mathbb{C}}\mathbb{M}'$, which is the fusion product

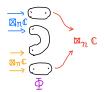
The $\mathbb{V}^{\otimes 2}$ -module $\boxtimes_{\mathfrak{N}}\mathbb{C}$ as an associative algebra

In the following, all 2-pointed spheres are standard, i.e., equivalent to $(\mathbb{P}^1;0,\infty;z,1/z).$

- The canonical CB $\mathfrak{I}_{\mathfrak{N}}$ of $\overset{\rightarrow}{\nearrow}$ $\overset{\bowtie}{\nearrow}_{n}$ can be viewed as a linear
 - $\gimel^\sharp_\mathfrak{N}:\mathbb{C}\to\overline{\boxtimes_\mathfrak{N}\mathbb{C}}\text{, equivalently, an element of }\overline{\boxtimes_\mathfrak{N}\mathbb{C}}.$
- By the SF theorem, there is a unique CB

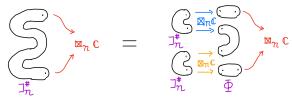
$$\Phi: (\boxtimes_{\mathfrak{N}}\mathbb{C}) \otimes (\boxtimes_{\mathfrak{N}}\mathbb{C}) \to \boxtimes_{\mathfrak{N}}\mathbb{C}$$

(algebraic closure not needed, since Φ intertwines the top and bottom actions of L(0)) for the following figure such that $\mathfrak{I}^{\sharp}_{\mathfrak{N}} = \Phi(\mathfrak{I}^{\sharp}_{\mathfrak{N}} \otimes \mathfrak{I}^{\sharp}_{\mathfrak{N}})$.



The conformal block $\Phi: (\boxtimes_{\mathfrak{N}}\mathbb{C}) \otimes (\boxtimes_{\mathfrak{N}}\mathbb{C}) \to \boxtimes_{\mathfrak{N}}\mathbb{C}$

ullet Pictorially, Φ is the unique CB such that



Theorem (G.-Zhang arXiv:2508.04532)

For each $\xi, \eta \in \boxtimes_{\mathfrak{M}} \mathbb{C}$, define $\xi \star \eta = \Phi(\xi \otimes \eta)$. Then $(\boxtimes_{\mathfrak{M}} \mathbb{C}, \star)$ is a (non-unital) associative \mathbb{C} -algebra.

• If $\mathbb V$ is rational, then $\boxtimes_{\mathfrak N} \mathbb C \simeq \bigoplus_{\mathbb M \in \operatorname{Irr}} \mathbb M \otimes \mathbb M'$ as $\mathbb V^{\otimes 2}$ -modules and as $\mathbb C$ -algebras.

The functor $\mathfrak{F}: \mathrm{Mod}(\mathbb{V}) \to \mathrm{Coh}^{\mathrm{L}}(\boxtimes_{\mathfrak{N}}\mathbb{C})$

- Recall the $\mathbb{V}^{\otimes 2}$ -module morphisms $\pi_{\mathbb{M}}: \boxtimes_{\mathfrak{N}} \mathbb{C} \to \mathbb{M} \otimes_{\mathbb{C}} \mathbb{M}'$ which are dinatural and make $\boxtimes_{\mathfrak{N}} \mathbb{C}$ an end.
- Let $\mathrm{Coh}^L(\boxtimes_{\mathfrak{N}}\mathbb{C})$ be the category of finitely-generated left $\boxtimes_{\mathfrak{N}}\mathbb{C}$ -modules that are quotient modules of free modules.

Theorem (G.-Zhang arXiv:2508.04532)

 $\pi_\mathbb{M}$ is an algebra homomorphism, and $(\mathbb{M},\pi_\mathbb{M})$ is an object of $\mathrm{Coh}^L(\boxtimes_\mathfrak{N}\mathbb{C})$

Theorem (G.-Zhang arXiv:2508.04532)

The functor $\mathfrak{F}: \operatorname{Mod}(\mathbb{V}) \xrightarrow{\simeq} \operatorname{Coh}^L(\boxtimes_{\mathfrak{N}}\mathbb{C})$ sending $(\mathbb{M}, Y_{\mathbb{M}})$ to $(\mathbb{M}, \pi_{\mathbb{M}})$ is an isomorphism of linear categories.

Pseudo-traces for unital finite-dimensional algebras

- Let A be a finite-dimensional unital \mathbb{C} -algebra and M a finite-dimensional projective left A-module.
- The projectivity is equivalence to the existence of

$$\alpha_1,\dots,\alpha_n\in \operatorname{Hom}_A(A,M) \qquad \check{\alpha}^1,\dots,\check{\alpha}^n\in \operatorname{Hom}_A(M,A)$$
 satisfying $\sum_i\alpha_i\circ\check{\alpha}^i=\operatorname{id}_M$

We have the pseudo-trace construction (Hattori and Stallings, 65)

$$SLF(A) \to SLF(\operatorname{End}_A(M)) \qquad \phi \mapsto \operatorname{Tr}^{\phi}$$

 $\operatorname{Tr}^{\phi}(x) = \sum_i \phi(\check{\alpha}^i \circ x \circ \alpha_i(1_A))$

where \pmb{SLF} =symmetric linear functionals (i.e. $\phi:A\to\mathbb{C}$ is linear and $\phi(xy)=\phi(yx)$).

• When $G \in \operatorname{Mod}^{\mathbf{L}}(A)$ is a projective generator, the pseudo-trace map $SLF(A) \to SLF(\operatorname{End}_A(G))$ is a linear isomorphism (Beliakova-Blanchet-Gainutdinov 21).

Pseudo-traces for the end $\boxtimes_{\mathfrak{N}} \mathbb{C}$

• Similarly, for each projective generator \mathbb{G} of $\mathrm{Mod}(\mathbb{V}) \simeq \mathrm{Coh}^L(\boxtimes_{\mathfrak{N}}\mathbb{C})$, we have a linear isomorphism defined by the pseudo-trace construction:

$$SLF(\boxtimes_{\mathfrak{N}}\mathbb{C}) \xrightarrow{\simeq} SLF(\operatorname{End}_{\boxtimes_{\mathfrak{N}}\mathbb{C}}(\mathbb{G})) = SLF(\operatorname{End}_{\mathbb{V}}(\mathbb{G}))$$

- $SLF(\boxtimes_{\mathfrak{N}}\mathbb{C})$ can be identified with $CB(\boxtimes_{\mathfrak{N}}\mathbb{C})$, and hence with $CB(\boxtimes_{\mathfrak{N}}\mathbb{C})$ \leftarrow \mathbb{V}) by "propagation of CB".
- By the SF theorem, $CB(\boxtimes_n \mathbb{C} \xrightarrow{>} (\cdots) \leftarrow \mathbb{V})$ is linearly isomorphic to $CB((\frown \cdot) \leftarrow \mathbb{V})$. Therefore:

Theorem (G.-Zhang 2508.04532, conjectured by Gainutdinov-Runkel)

Let $\mathbb{G}\in\mathrm{Mod}(\mathbb{V})$ be a projective generator. Then the composition of the SF isomorphism and the pseudo-trace map yields a linear isomorphism $CB(\begin{cases} \begin{cases} \beg$

Conclusion

- Question: How are (co)ends related to pseudo-traces?
- Quick answer: The end $\int_{\mathbb{M}\in\mathrm{Mod}(\mathbb{V})} \mathbb{M}\otimes_{\mathbb{C}} \mathbb{M}'$, which is an object of $\mathrm{Mod}(\mathbb{V}^{\otimes 2})$, has a natural associative \mathbb{C} -algebra structure whose module category is equivalent to $\mathrm{Mod}(\mathbb{V})$, and whose SLF have a conformal-block interpretation.

Once we have associative $\mathbb{C}\text{-algebras},$ we can run the pseudo-trace machinery.