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The goal of my talk

This talk is based on the following papers.
GZ1 arXiv:2305.10180
GZ2 arXiv:2411.07707 to appear in CCM

‹ GZ3 arXiv:2503.23995
‹ Zhang 25 arXiv:2509.07720

The goal is to introduce sewing-factorization (SF) theorem
in logarithmic CFT (GZ1-GZ3) and the non-equivalence of
smooth and nodal conformal block functors (Zhang 25).
Throughout my talk, I will fix a C2-cofinite N-graded VOA V,
which is not necessarily self dual or rational. The representation
category of V is denoted by ModpVq.

Hao Zhang October 2025 2 / 17
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Smooth conformal block functors

Let X “ pC;x1, ¨ ¨ ¨ , xN ; η1, ¨ ¨ ¨ , ηNq be an N -pointed compact
Riemann surface with local coordinates. The smooth conformal
block (CB) functor is the left exact contravariant functor

CBpX,´q : ModpVbNq Ñ Vect
W ÞÑ CBpX,Wq,

where CBpX,Wq is the space of smooth conformal blocks
(CB) described as follows.
Associate W P ModpVbNq to the ordered marked points
x1, ¨ ¨ ¨ , xN . Then CBpX,Wq consists of linear functionals
W Ñ C invariant under certain intertwining properties.

Hao Zhang October 2025 3 / 17
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Graphical calculus

The picture for CBpX,Wq is

CBp q “ CBp q

The marked points is typically partitioned into several subsets.

CBp q “ CBp q

Any CB ϕ : X b Y1 Ñ C in the above space can also be viewed
as a linear map ϕ7 : X Ñ Y “ pY1q˚ satisfying certain
intertwining properties.

Hao Zhang October 2025 4 / 17
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Towards higher genus: sewing/composing CB

Let X P ModpVbNq,Y P ModpVbKq,M P ModpVbLq and

ϕ P CBp q, ψ P CBp q

The sewing/composition of ϕ and ψ is defined as

pψ ˝ ϕq7pwq :“
ÿ

λ‚PCK

ψ7
`

Pλ‚pϕ7pwqq
˘

Theorem (GZ2, to appear in CCM)

ψ ˝ ϕ converges to a CB in CBp q.

Hao Zhang October 2025 5 / 17
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SF theorem A: horizontal composition

Fix X P ModpVbNq,M P ModpVbLq. For each Y P ModpVbKq,
sewing CB gives a linear map

SY : CBp q b CBp q Ñ CBp q

Theorem (GZ3, SF theorem A)
As Y P ModpVbKq varies, the dinatural transform SY is a coend, i.e.,

ż YPModpVbKq

CBp q b CBp q

» CBp q

Genus 0: Huang-Lepowsky-Zhang, Moriwaki.
Hao Zhang October 2025 6 / 17
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Fusion products and canonical CB

Fix X P ModpVbNq and X “ . Associate X to the blue
points of X.

Since every left exact linear functor from a finite C-linear category
to Vect is representable (Douglas-SchommerPries-Snyder
19),there exists a Y-natural isomorphism

HomVbK pbXpXq,Yq » CBp q

for some unique bXpXq P ModpVbKq (called fusion product).
The CB Xג P CBp q corresponding to
id P EndVbK pbXpXqq is called the canonical CB.

To summarize: fusion products represent smooth CB functors.
Hao Zhang October 2025 7 / 17
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SF theorem B: fusion products

Recall the canonical CB Xג P CBp q.

Theorem (GZ3, SF theorem B)
The linear map ψ ÞÑ ψ ˝ Xג gives an isomorphism

CBp q
»
ÝÑ CBp q

This isomorphism is called the SF isomorphism.

In short: replace the red part with the fusion product.

Hao Zhang October 2025 8 / 17
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SF theorem A implies B

We have

CBp q

»

ż YPModpVbKq

CBp q b CBp q

»

ż YPModpVbKq

HomVbK pbXpXq,Yq b CBp q

»CBp q

The last isomorphism is due to Lyubashenko 96, Fuchs-Schweigert 17.
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Application: self-sewing via the end E

The end E :“
ş

XPModpVq
X b X1 P ModpVb2q is a fusion product of C:

. Let ω P CBp q be the canonical CB.

Corollary (GZ3)
The linear map ψ ÞÑ ω ˝ψ gives an SF isomorphism

CBp q
»
ÝÑ CBp q

To summarize: factorization of smooth CB is given by the end E.
Remark: When V is N-graded, C2-cofinite and rational, factorization
of smooth CB is given by Damiolini-Gibney-Tarasca.

Hao Zhang October 2025 10 / 17
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Factorization of CB in rational CFT

We briefy recall how algebraic geometers obtain factorization of
smooth CB via nodal CB in rational CFT. We assume that V is
N-graded, C2-cofinite and rational in the following two pages.

Virasoro algebras, higher genus: Beilinson-Feigin-Mazur 91.
Affine Lie algebras, higher genus: Tsuchiya-Ueno-Yamada 89,
Bakalov-Kirillov 01. Looijenga 13.
General VOA, genus 0: Nagatomo-Tsuchiya 05.
General VOA, higher genus: Damiolini-Gibney-Tarasca 19.

I will use the setting of Damiolini-Gibney-Tarasca 19 to give an
introduction.

Hao Zhang October 2025 11 / 17



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Factorization of CB in rational CFT

The definition of CB can be generalized to nodal curves.
Factorization of nodal CB is given by irreducible V-modules.

‘MPIrrCBp q » CBp q

By infinitesimal smoothing of the above isomorphism, the spaces
of conformal blocks form a vector bundle over Mg,N .
In particular, we have factorization of smooth CB given by
irreducible V-modules.

‘MPIrrCBp q » CBp q

Hao Zhang October 2025 12 / 17
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Factorization of nodal CB in logarithmic CFT

We return to the assumption that V is N-graded and C2-cofinite.
The mode transition algebra (MTA) A was introduced by
Damiolini-Gibney-Krashen in 2022. As an object in ModpVb2q, A is
defined by the two-sided induction of Zhu algebra.

Theorem (Damiolini-Gibney-Krashen 22)
We have the factorization of nodal CB:

CBp q » CBp q

To summarize: factorization of nodal CB is given by the MTA A.

Hao Zhang October 2025 13 / 17
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Genus 0 CB via the end and the MTA

For each X,Y P ModpVq, the theorem of Damiolini-Gibney-Krashen
implies the factorization of genus 0 nodal CB:

CBp q » CBp q » HomVb2pA,X1 b Y1q

On the other hand, by Fuchs-Schaumann-Schweigert 16, we have the
factorization of genus 0 smooth CB:

CBp q » HomVpY,X1q » HomVb2pE,X1 b Y1q.

Hao Zhang October 2025 14 / 17
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Non-equivalence of genus 0 smooth and nodal CB

In the rest of this talk, let V be a C2-cofinite N-graded VOA
admitting a module that is not generated by its lowest weight
subspace (e.g., the triplet algebra Wp and the even symplectic
fermion VOA).

Theorem (Zhang 25)
There exist X,Y P ModpVq such that

dimCBp q ‰ dimCBp q

By propagation of CB, the spaces of CB associated to X,Y,V, ¨ ¨ ¨ ,V
do not form a vector bundle on M0,N for N ě 4.

Hao Zhang October 2025 15 / 17
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The choice of X and Y

In the proof of the above theorem, we choose X to be an
indecomposible projective V-module that is not generated by its
lowest weight subspace, and Y to be an indecomposible
projective module or irreducible module.
If V is the triplet algebra Wp, then X can be chosen to be the
projective cover of X´

1 , where X´
1 is the unique irreducible

module with maximal conformal weight.

Hao Zhang October 2025 16 / 17
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The end E is not isomorphic to the MTA A

Recall that

CBp q » HomVb2pE,X1 b Y1q

CBp q » HomVb2pA,X1 b Y1q

for each X,Y P ModpVq. Therefore,

Corollary (Zhang 25)
The end E “

ş

MPModpVq
M b M1 is not isomorphic to the MTA A as

an object in ModpVb2q.
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