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The goal of my talk

e This talk is based on a joint project with Bin Gui.
GZ1 | arXiv:2305.10180
GZ2 | arXiv:2411.07707
GZ3 | arXiv:2503.23995

@ The main result we obtained is called sewing-factorization
(SF) theorem for a finite logarithmic chiral CFT of arbitrary
genus. The goal of my talk is to introduce SF theorem and
explain why it is important to study SF theorem.

e Throughout my talk, | will fix a Cs-cofinite N-graded VOA V,
which is not necessarily self dual or semisimple. The
representation category of V is denoted by Rep(V).
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Coends in CFT

@ In the literature, there are two ways to study finite logarithmic

chiral CFT.
VOA community | pseudo-traces, modular S

TQFT community | (co)ends, categorical S

@ The idea of “summing over all intermediate states” in physics
can be realized by coend constructions in a rigorous way
(Lyubashenko, Fuchs-Schweigert).

e The initial relation between pseudo-traces and coends was
studied to give a formulation of non-semisimple modular Verlinde
formula (Gainutdinov-Runkel). It is conjectured in their paper

that "modular S=categorical S".
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SF theorem and coends

SF theorem builds a bridge between pseudo-traces and (co)ends.

VoA (owar Jenus TQFT
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In this talk, | will focus on coends and describe how coends are
related to SF theorem in a natural way.
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(Co)ends of a bi-functor

o Let L € N and D be a category. Choose a bi-functor
F : Rep(V®L) x Rep(V®F) — D and an object A € D.

e A family of morphisms pw : F(W' W) — A for all
W e Rep(V®L) is called dinatural if for any M € Rep(V®~) and
T € Homyer (M, W) (with transpose T*), the following diagram

commutes:
FOW, M) 2T vy, m)
F(idw,,T)J lgaM
FWW, W) —2 4
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Coends of a bi-functor

o (p, A) is called a coend in D if it satisfies the universal property:
for each B € D and dinatural transformation
Uy : F(W' W) — B, there is a unique ® € Homp(A, B) such
that ¢w = ® o oy holds for all W. If a coend exists, then it
must be unique. In this case, we write

A=

WeRep(VOL)
J F (W, W).

e Reversing arrows defines ends

J F(W', W)
WeRep(VOL)
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Lyubashenko's (co)ends

Assume that V is strongly finite and Rep(V) is rigid.
e Lyubashenko’s end is defined by

]sz W xI W e Rep(V)
WeRep(V)

with dinatural transformations . — W’/ [x] W.

e L is self dual and isomorphic to Lyubashenko’s coend
WeRep(V)
L~ J WX W,
with dinatural transformations W/ x] W — L.

The existence of Lyubashenko’s (co)ends is guaranteed by rigidity.
May 2025  7/25



Topological modular functors

e By Lyubashenko, Fuchs-Schweigert, the topological modular
functor of a N-pointed genus ¢ surface is described by

Homy (W, X - - - &} Wy & L¥, V')
where Wy, --- Wy € Rep(V), or more generally,
Homy ( BuLz (W) &1L4%, V')

where W € Rep(V®Y) and Xz : Rep(VEY) — Rep(V).

o As we will show later, the space of conformal blocks is isomorphic
to the topological modular functor above.
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Conformal blocks

e Choose an N-pointed compact Riemann surface with local
coordinates X = (C;xy1, -+ ,xn; M, -+ ,nn). C is possibly
disconnected.

o Associate W € Rep(V®Y) to the ordered sequence z1, -, zx.

e A conformal block (CB) is a linear map P : W — C invariant
under the action of V and X on W (Zhu 94, Frenkel&Ben-Zvi
04). The spaces of conformal blocks is denoted by

CB(X,W) = CB( “’ )

o CB functor W € Rep(V®") — CB(X,W) € Vect is left exact.
T



Sewing conformal blocks is dinatural

Let X be an (IV + 2L)-pointed surface and X := SX be the sewing of
X along L pairs of points. Here X is possibly disconnected.
Theorem (GZ2)

Fix W € Rep(V®Y). For each X € Rep(V®"), sewing conformal
blocks gives a well-defined linear map

5 0B( TR - on( BC9)

o x'
* *=5%

Moreover, Sx for all X € Rep(V®") is dinatural.
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Miyamoto's observation

e Easy to check: any dinatural transformation into Vect must be
surjective to be a coend.

o Unfortunately, for fixed W € Rep(V®"), S fails to be surjective
in the case of self-sewing, and hence fails to be a coend. This is
due to Miyamoto's observation: when Xis a (1 +2-1)-pointed
sphere and W = V € Rep(V®!), S is no longer surjective.

e Left exact coends and pseudo-traces are two methods to solve
this problem.

e Pseudo-traces are studies by VOA people (Arike, Fiordalisi,
Huang, Miyamoto, etc) to give a suitable formulation of modular
invariance. It is a generalization of Segal’s sewing, i.e., Sx when
L=1.
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Left exact coends, topological modular functors

In the following three pages, assume L = 1 for simplicity. In this case,
X e Rep(V).
o Recall Lyubashenko's end IL. The dinatural transformation
L — X'[x] X induces a family of morphisms

Sx : Homy ([Murz (—) RIX K XKL V)
— Homy ( Mz (—) KL, V')

in Lex(Rep(V®Y), Vect), the category of left exact
contravariant functors from Rep(V®V) to Vect.

o Clearly Gy is dinatural with respect to X.
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Theorem (Lyubashenko 96, Fuchs-Schweigert 17)

Assume that V is strongly finite and Rep(V) is rigid. Sx is a coend
into Lex(Rep(VOY) Vect), i.e., it induces an equivalence

XeRep(V)
§ HOHIV(HLZ (—) X/X]Lgil,vl)

~ Homv( Xurz (—) ]Lg7 Vl)

e Although | formulate their theorem in VOA context, they actually
proved in the categorical sense.

o | will show later in my talk the following equivalence

Homy ([Murz (—) RIX' KX KLY V) ~ CB(%, - X' ®X)
Homy ([Rurz (—) ML, V') ~ CB(X, —)
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Left exact coends, conformal blocks

On the other hand, the sewing map gives a dinatural transformation
Sy : CB(X, - ®X ®@X) - CB(X, )

in Lex(Rep(VEY), Vect).

Conjecture (Gui-Z.)

Assume that V is strongly finite and Rep(V) is rigid. Through the
equivalence between Hom and C'B, Sx coincides with Gx. Thus Sx
is a coend in Lex(Rep(V®Y), Vect) and induces

XeRep(V) -
§ CB(E, - ®X®X) ~ CB(X,-)
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Disjoint sewing and coends in Vect

o Let X be an (NN + L)-pointed surface and ) be an
(L + K)-pointed surface. We can sew X and 2) to get X#9),
which is an (IV + K)-pointed surface.

(&=
* Yy x#9

o Fix W e Rep(V®Y), M € Rep(V®X). Associate W, M, W @ M
to the blue points of X,%2), X#%) respectively.
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Sewing-factorization theorem

For each X € Rep(V®"), we already showed that sewing conformal
blocks Sx gives a dinatural transformation in Vect

Sx : OB(»4S)+) @ OB( «{=") - CB( "{===")

X ] x#Y

VOG- h#D =Sk (V@ D)

Theorem (SF theorem A, GZ3)

As X € Rep(V®) varies, Sx is a coend in Vect, i.e., S induces

XeRep(V®L)
| T CB( AN @ CB( =) ~ OB("LETD

* Y x#9
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Higher genus (dual) fusion products

o In order to prove SF theorem A, we introduce
to give an equivalent version of SF theorem.
@ Since any left exact functor from a finite C-linear category to
Vect is representable, there exists NxW € Rep(V®%) such that
we have there is an equivalence of contravariant functor

X +— Homyer (X, NxW) ~ X — CB( wx)

*

The element corresponding to id € Homyer (Nx W, Nx W) is
denoted as wy € C'B( NE‘M). Write KxW = (NxW)'.
*x
e We have an explicit construction of NxW as a subspace of W* in

GZ1. The proof of SF theorem relies heavily on this construction.
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Sewing-factorization theorem

Theorem (SF theorem B, GZ3)

Sewing conformal blocks \ — wx#\ gives an isomorphism

CB( @*(W)M) = CB( " M)
£} X Y
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Why are two SF theorems equivalent?

Theorem (Lyubashenko 96, Fuchs-Schweigert 17)

The family of linear maps

Hommyes (X, Nx (W) ® CB( =) _ B( =)
£}

3
T®x — xo (T"®idy)

for all X € Rep(V®L) is a coend.

This together with Homyer (X, Nx(W)) ~ CB( WX) proves
x

the equivalence of SF theorem A and B.
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Geometric realization of Lyubashenko's construction

Write 5 = Vandﬂz A

o Xy = Xurz : Rep(V®V) — Rep(V).

e Xln,Nqa : Rep(V) - Rep(VR V).
Theorem (Gui-Z. to appear)

o Ma(V) = FX'®X e Rep(VRV).

o My(Na(V)) = {* X' R X e Rep(V).

@ This theorem implies the existence of Lyubashenko’s coend in
Rep(V) without assuming rigidity.

e If V is in addition rational, then SX can be replaced by ®xcrrr.
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Dinatural transformation of coends

o By the definition of dual fusion products and propagation of CB,
we have an isomorphism

{
Endy (X) ~ CB( &) =, Homye: (X' @ X, NaV)

1 T
S x

for each X € Rep(V).

e The identity map of X corresponds to a morphism
x : X' ®X >NV in Rep(V® V).

o Applying to functor iy : Rep(V® V) — Rep(V), we get a
morphism tx : X' XX — Xig(Na(V)) in Rep(V).
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Connection with topological modular functor

Recall that 3 = V and Q = A .

o SF theorem implies that @ (V) ~ Ky(®a(V))

e From now on, assume that V is strongly finite and Rep(V) is
rigid. We can prove that Xlo (V) is self-dual, i.e.,
Mo (V) ~ Na(V).

o Recall that we have Xy (Nq(V)) = XX X' x X. Therefore,

NO

XeRep(V)
(V) ~ J X' EX ~ L.
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Let X be an N-pointed surface with genus g and associate
W e Rep(V®Y) to the points of X.

Theorem (GZ3)

Assume that V is strongly finite and Rep(V) is rigid. We have an
isomorphism

CB(%X,W) ~ Homv( Kz (W) & 1LX9, V)'

Proof.
By SF theorem and propagation, C'B(X, W) is isomorphic to

L L

CB( w) >~ CB( ) >~ HOmv(HLZ (W) Lg,V).
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Torus conformal blocks

Corollary (GZ3)

Assume that V is strongly finite and Rep(V) is rigid. Let
W e Rep(V). We have an isomorphism

CB( ) ~ Homy (L, W').
w

Our result is the first that relates torus conformal blocks and L.
Before our work, no previous work on modular invariance has
succeeded in establishing such a relation. This relation is crucial for
relating the modular S-transform and the categorical S-transform.
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Thank you for listening to my talk!
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