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1 Riemann-Roch theorem
1.1 Riemann-Roch theorem for compact Riemann surface
The classical Riemann-Roch theorem is stated by means of divisors. Suppose X is a compact
Riemann surface of genus g. D is a divisor of X. Define a sheaf OD by setting

OD(U) = {f ∈ M(U) : ordx(f) ≥ −D(x),∀x ∈ U}

for each open subset U . Note that if D = 0, then O0 = O is the structure sheaf.

Theorem 1 (Riemann-Roch theorem). The cohomology H0(X,OD) and H1(X,OD) are finite
dimensional vector spaces and

dimH0(X,OD)− dimH1(X,OD) = 1− g + degD.

We give a sketch of proof. Suppose P is a point on X. Then there is a short exact sequence of
sheaves

0 → OD → OD+P → CP → 0,

where OD → OD+P is the natural inclusion and CP is defined by

CP (U) =

{
C, P ∈ U
0, P /∈ U

β : OD+P → CP is characterized as follows: Suppose U ⊂ X is an open set. If P /∈ U , then βU is
the zero homomorphism. If P ∈ U and f ∈ OD+P (U), then with respect to local coordinate z at
P , f can be written as

f =

∞∑
n=−k−1

cnz
n,

where k = D(P ). Set βU (f) = c−k−1 ∈ C = CP (U). The long exact sequence of cohomology
group gives

0 → H0(X,OD) → H0(X,OD+P ) → C → H1(X,OD) → H1(X,OD+P ) → 0.
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We deduce Riemann-Roch theorem by induction. First Riemann-Roch theorem holds for D = 0
because H0(X,O) ∼= C and dimH1(X,O) = g. Then keeping the notation as above, we set
D′ = D + P . Long exact sequence of cohomology splits into two short exact sequences

0 → H0(X,OD) → H0(X,OD′) → V → 0,

0 →W → H1(X,OD) → H1(X,OD′) → 0,

where V := ImH0(X,OD′) → C and W := C/V . So by linear algebra,

dimH0(X,OD′) = dimH0(X,OD) + dimV,

dimH1(X,OD) = dimW + dimH1(X,OD′),

dimV + dimW = 1 = degD′ − degD.

Then

dimH0(X,OD)− dimH1(X,OD)− degD = dimH0(X,OD′)− dimH1(X,OD′)− degD′,

which implies: if the Riemann-Roch formula holds for one of D and D′, then it must hold for both.
For an arbitrary divisor D, we may write

D = P1 + · · ·+ Pm − Pm+1 − · · · − Pn

and Riemann-Roch formula holds by induction.
We give a simple application of Riemann-Roch theorem.

Corollary 1. Suppose X is a compact Riemann surface of genus g and a ∈ X. Then there exist
a non-constant meromorphic function f on X which has a pole of order ≤ g + 1 at a and is
otherwise holomorphic. Moreover, if we view f as a holomorphic function f : X → P1, then it is
a holomorphic covering map with at most g + 1 sheets.

Proof. Let D : X → Z be the divisor with D(a) = g+1 and D(x) = 0 for x 6= a. By Riemann-Roch
theorem,

dimH0(X,OD) ≥ 1− g + degD = 2.

Thus ,there exists a non-constant function f ∈ H0(X,OD) and this function is what we need.
Since the value ∞ has multiplicity ≤ g + 1, f : X → P1 is a covering map with at most g + 1
sheets.

Since 1-sheeted convering map must be a biholomorphism, every Riemann surface of genus 0
is biholomorphic to the Riemann sphere.

1.2 Hirzebruch-Riemann-Roch theorem
Riemann-Roch formula in previous subsection actually computes the Euler characteristic of line
bundle OD:

χ(X,OD) := dimH0(X,OD)− dimH1(X,OD).

In fact, each line bundle on a compact Riemann surface is isomorphic to some OD and so the Euler
characteristic of line bundles on a compact Riemann surface is complete. To see this, suppose E is
a holomorphic line bundle and choose a global meromorphic section ψ of E which does not vanish
identically (must exist). Let D be the divisor of ψ. Then f 7→ fψ gives an isomorphism of sheaves
OD ' E. The degree of line bundle E ' OD is defined as degE = degD.

In general, Euler characteristic of vector bundles on a compact complex manifold can be com-
puted by Hirzebruch-Riemann-Roch theorem. Suppose X is a compact complex manifold of di-
mension n and E is a vector bundle. Define the Euler characteristic

χ(X,E) :=

n∑
i=0

(−1)i dimHi(X,E).

Theorem 2 (Hirzebruch-Riemann-Roch). Euler characteristic is given by

χ(X,E) =

∫
X

ch(E)td(X),

where ch(E) is the total Chern character and td(X) is the total Todd class.

We are not going to discuss this theorem in details.
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2 Vanishing of cohomology
2.1 Serre vanishing theorem
In studying cohomology, it is always helpful that certain cohomology vanishes. For simplicity, we
will assume our complex manifold is a compact Riemann surface.

Suppose D =
∑
nixi is a divisor and E is a holomorphic vector bundle. Consider the vector

bundle E(D) defined below: for any open set U , E(D)(U) is the set of all s ∈ E(U − {xi})
satisfying that for any xi and any local coordinate ηi near xi, ηni

i · s has removable singularity at
xi. The sheaf E(D) is a locally free OX -module and there is a natural isomorphism of OX -modules
E(D) ' E ⊗OX(D). We will study vanishing theorem of this kind of vector bundles.

In general, the isomorphism classes of line bundles on a complex manifold X form an abelian
group Pic(X) under the tensor product and dual operation. We call Pic(X) the Picard group of
X, which is isomorphic to H1(X,O∗

X). One can show D 7→ OX(D) gives a group homomorphism
Div(X) → Pic(X), and so OX(D)∗ ' OX(−D),OX(D1 +D2) ' OX(D1)⊗OX(D2).

Theorem 3 (Serre vanishing theorem). Assume X is a connected compact Riemann surface and
E is a vector bundle on X. D is a nonzero effective divisor, i.e., D ≥ 0 and D 6= 0. Then there
exists N ∈ N such that H0(X, E(−nD)) = 0 for all n > N .

Proof. Write D =
∑
xi. Then for any x = xi, H0(X, E(−nD)) is a subspace of H0(X, E(−nx)).

So it suffices to prove H0(X, E(−nx)) = 0 for sufficiently large n.
By Hodge theory, H0(X, E) is finite dimensional, so we choose a basis s1, s2, · · · , sM . With

respect to local chart (U, z) of x, E|U ' E ⊗OU where E = Ex and all sk has expansion

sk(z) =

∞∑
j=0

vk,jz
j

where vk,j ∈ E. For any n ∈ N, let

vn
k = (vk,0, vk,1, · · · , vk,n) ∈ E ⊗ Cn+1

and
Fn := span{vn

k : k = 1, 2, · · · ,M} ⊂ E ⊗ Cn+1.

vn
k is understood as the first n coeffients of sk. Then {Fn : n ∈ N} is a sequence of finite dimensional

vector spaces with increasing and bounded dimension (note that the dimension must be bounded
by M). Thus, dimFn must be constant when n is sufficiently large. Choose N ∈ N such that
dimFn = K for n ≥ N . Without loss of generality, assume vN

1 , · · · ,vN
K are linearly independent.

Then by linear algebra, vn
1 , · · · ,vn

K are also linearly independent, and so form a basis of Fn for
each n ≥ N . So for any k and n ≥ N , there exist unique c1,n, · · · , cK,n ∈ C, such that

vn
k = c1,nv

n
1 + · · ·+ cK,nv

n
K .

By uniqueness, c1,n = c1,N , · · · , cK,n = cK,N for all n ≥ N . This implies sk = c1,Ns1+· · ·+cK,NsK
locally for any fixed k = 1, · · · ,M . By connectedness, this equation holds globally. But s1, · · · , sM
is a basis, so K =M = dimH0(X, E).

Choose any n ≥ N and σ ∈ H0(X, E(−nx)) ⊂ H0(X, E). Then there exist c1, · · · , cK ∈ C such
that σ = c1s1 + · · ·+ cKsK . Expand σ locally near x that

σ(z) =

∞∑
j=0

νjz
j .

Then by our pervious discussion, (ν1, · · · , νN ) = c1v
N
1 + · · ·+ cKvN

K . Since z−nσ(z) has removable
singularity near x for any n ≥ N , ν1 = · · · = νN = 0. Therefore c1 = · · · = cK = 0 and σ = 0.

This theorem says that nonzero global (holomorphic) sections cannot have zeros of arbitrary
orders.

Corollary 2 (Serre vanishing theorem). Assume X is a connected compact Riemann surface. E
is a vector bundle and D is a nonzero effective divisor. Then there exists N ∈ BN such that
H1(X, E(nD)) = 0 for any n > N .
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Proof. Denote the tangent sheaf as ΘX and the cotangent sheaf as ωX . It is well known these two
sheaves are dual to each other. Then

E(nD) ' E ⊗ΘX ⊗OX(nD)⊗ ωX ' (E∗ ⊗ ωX(−nD))∗ ⊗ ωX .

By Serre duality,

H1(X, E(nD)) ∼= H1(X, (E∗ ⊗ ωX(−nD))∗ ⊗ ωX) ∼= H0(X, E∗ ⊗ ωX(−nD)).

By our previous Serre vanishing theorem, H1(X, E(nD)) = 0 for sufficiently large n.

2.2 Kodaira vanishing theorem
Kodaira vanishing theorem helps to approximate the value of N in Serre vanishing theorem when
E is a line bundle.

Theorem 4 (Kodaira vanishing theorem). Assume X is a connected compact Riemann surface.
D is a divisor with degD > 0. Then

H0(X,OX(−D)) = 0, H1(X,ωX(D)) = 0.

Proof. Suppose on the contrary H0(X,OX(−D)) is nonzero. Choose a nonzero global section
f ∈ H0(X,OX(−D)). By residue theorem, deg(f) = 0, where (f) is the divisor of f . But f ∈
H0(X,OX(−D)) implies (f)−D ≥ 0. So deg(f) ≥ degD > 0 is a contradiction. H1(X,ωX(D)) =
0 follows from Serre duality.

From now on, we consider line bundles.

Proposition 1. Suppose X is a connected compact Riemann surface of genus g. Then

degωX = 2g − 2, degΘX = 2− 2g.

Proof. By Riemann-Roch theorem and Serre duality,

1− g + degωX = χ(X,ωX) = dimH0(X,ωX)− dimH1(X,ωX)

= dimH1(X,OX)− dimH0(X,OX) = g − 1.

So degωX = 2g − 2 and degΘX = 2− 2g.

The following theorem gives an explicit description of vanishing condition of line bundles.

Theorem 5. Assume X is a connected compact Riemann surface of genus g. D is a divisor and
L is a line bundle. Then H1(X,L(D)) = 0 when degD > 2g − 2− degL.

Proof. Choose divisors T,L such that ΘX ' OX(T ) and L ' O(L). Then

L(D) ' ωX ⊗ΘX ⊗ L(D) ' ωX ⊗ L⊗OX(D)⊗OX(T ) ' ωX(T + L+D).

When degD > 2g − 2− degML,

deg(T + L+D) > 2g − 2− degL+ degL+ deg T = 0.

By Kodaira vanishing theorem, H1(X,L(D)) = 0.

Corollary 3. Assume X is a connected compact Riemann surface of genus g. D is a divisor and
n ∈ Z. Then H1(X,Θ⊗n

X (D)) = 0 when degD > (n+ 1)(2g − 2).

Proof. It is because degΘ⊗n
X = n(2− 2g).

Note that (n + 1)(2g − 2) relies only on the topology of Riemann surface because g does. To
see this, use Hodge theory and Serre duality

H1(X,C) ∼= H1,0(X)⊕H0,1(X) ∼= H0(X,ωX)⊕H1(X,OX) ∼= H1(X,OX)⊕H1(X,OX).

We see g = dimH1(X,OX) = dimH1(X,C)/2. The de Rham cohomology is isomorphic to the
singular cohomology, which relies only on the topology of Riemann surface.
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2.3 General case
In fact, Serre and Kodaira vanishing theorem is still valid for a genral compact Kähler manifold.
We only some results in this subsection. The main idea is to give an alternative definition of
positivity without metioning divisors.

We assume X is a n-dimensional compact Kähler manifold.

Definition 1. A line bundle L is called positive if its first Chern class c1(L) ∈ H2(X,R) can be
represented by a closed positive real (1,1)-form.

Theorem 6 (Kodaira vanishing theorem). Let L be a positive line bundle. Then

Hq(X,ωp
X ⊗ L) = 0, forp+ q > n.

Note that Theorem 4 is the special case q = 1, p = 1, n = 1.

Theorem 7 (Serre vanishing theorem). Let L be a positive line bundle on X and E is a holomorphic
vector bundle. Then there exists a constant m0 such that Hq(X, E ⊗ Lm) = 0 for m ≥ m0 and
q > 0.

Note that Theorem 2 is the special case q = n = 1.
Kodaira and Serre vanishing theorem, together with Hirzebruch-Riemann-Roch theorem, are

important tools in studying cohomology of vector bundles.
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