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1 Hodge theory for real manifolds
1.1 Hodge ∗-operator
Let (M, g) be a n-dimensional closed oriented Riemann manifold with volume form Ω. Locally, we
choose an orthonormal frame ω1, · · · , ωn with respect to g for the cotangent bundle and thus we
can write Ω = ω1∧· · ·∧ωn. Denote the space of global smooth k-forms as Ωk(M) := Γ(M,∧kTM).

For ω, η ∈ Ωk(M), we write locally

ω =
∑

i1<···<ik

ωi1,··· ,ikω
i1 ∧ · · · ∧ ωik

η =
∑

i1<···<ik

ηi1,··· ,ikω
i1 ∧ · · · ∧ ωik .

Pointwisely, we define
〈ω, η〉 :=

∑
i1<···<ik

ωi1,··· ,ikηi1,··· ,ik .

It is easy to check 〈ω, η〉 is a globally defined smooth function on M and it is independent of the
choice of orthonormal frames. So it is reasonable to define

(ω, η) :=

∫
M

〈ω, η〉Ω.

This gives an inner product on Ω∗(M) = ⊕n
k=0Ω

k(M). Note that (−,−) is positive definite because
Ω is nowhere vanishing.

Hodge ∗-operator ∗ : Ωk(M) → Ωn−k(M) is defined by finding the ’complement’ of the k-form
in Ω. More precisely, if

ω =
∑

i1<···<ik

ωi1,··· ,ikω
i1 ∧ · · · ∧ ωik ,
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then
∗ω =

∑
i1<···<ik

εi1,··· ,ikωi1,··· ,ikω
1 ∧ · · · ∧ ω̂i1 ∧ · · · ∧ ω̂ik ∧ · · ·ωk,

where
εi1,··· ,ik = (−1)i1+···+ik+1+···+k.

Proposition 1. Suppose ω, η ∈ Ωk(M). Then

1. ∗1 = Ω,

2. ∗Ω = 1,

3. ∗ ∗ ω = (−1)k(n−k)ω,

4. ω ∧ ∗η = 〈ω, η〉Ω,

5. 〈∗ω, ∗η〉 = 〈ω, η〉.

Proof. All is straightforward from definition. We only prove 5 for example:

〈∗ω, ∗η〉Ω = ∗ω ∧ ∗ ∗ η = (−1)k(n−k) ∗ ω ∧ η = η ∧ ∗ω = 〈η, ω〉Ω.

Then 5 follows from the fact: Ω is nowhere vanishing.

Recall d : Ωk−1(M) → Ωk(M). Define δ = (−1)n(k−1)+1 ∗ d∗ : Ωk(M) → Ωk−1(M).

Proposition 2. δ is the adjoint operator of d with respect to (−,−), i.e.,

(dω, η) = (ω, δη),

for ω ∈ Ωk−1(M), η ∈ Ωk(M).

Proof. By direct computation,

d(ω ∧ ∗η) = dω ∧ ∗η + (−1)k−1ω ∧ d ∗ η
= dω ∧ ∗η + (−1)n(k−1)ω ∧ ∗ ∗ d ∗ η
= dω∗η − ω ∧ ∗δη.

By Stoke’s theorem,
(dω, η) =

∫
M

dω∗η =

∫
M

ω ∧ ∗δη = (ω, δη).

1.2 Harmonic forms and Hodge decomposition
Definition 1. ∆ := dδ+δd : Ωk(M) → Ωk(M) is called Hodge-Laplace operator. If ω ∈ Ωk(M)
satisfies ∆ω = 0, then ω is called a harmonic form.

Proposition 3. Hodge-Laplace operator satisfies:

1. ∆ is self-adjoint, i.e., (∆ω, η) = (ω,∆η) for all differtial forms.

2. ∆ is positive, i.e., (∆ω, ω) ≥ 0 and the equality holds if and only if ∆ω = 0.

3. ∗∆ = ∆∗.

Proof. To show ∆ is self-adjoint, it suffices to assume ω and η are both k-forms. Then

(∆ω, η) = (dδω, η) + (δdω, η)

= (δω, δη) + (dω, dη)

= (ω,∆η).

Note that the above identity gives

(∆ω, ω) = (δω, δω) + (dω, dω) ≥ 0,

and (∆ω, ω) = 0 if and only if δω = 0 and dω = 0, if and only if ∆ω = 0.
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To show ∆ commutes with ∗, assume ω is a k-form, then

∗δω = (−1)n(k−1)+1 ∗ ∗d ∗ ω = (−1)kd ∗ ω.

Similarly, δ ∗ ω = (−1)k+1 ∗ dω. So

∗dδω = (−1)kδ ∗ δω = δd ∗ ω.

Similarly, ∗δd = dδ∗. Thus,

∗∆ = ∗dδ + ∗δd = δd ∗+dδ∗ = ∆∗

As we can see in the proof, ω is a harmonic form if and only if dω = 0 and δω = 0.
Denote Hk(M) as the vector space of harmonic k-forms on M . We will see Hk(M) is actually

isomorphic to the de Rham cohomology of M .

Proposition 4. Suppose ω ∈ Hk(M).

1. ω has minimal norm in the de Rham cohomology class [ω]. More precisely, for any (k−1)-form
η, (ω + dη, ω + dη) ≥ (ω, ω), and the equality holds if and only if dη = 0.

2. ∗ω ∈ Hn−k(M).

Proof. Suppose η is a (k − 1)-form. Then

(ω + dη, ω + dη) = (ω, ω) + 2(ω, dη) + (dη, dη)

= (ω, ω) + 2(δω, η) + (dη, dη)

= (ω, ω) + (dη, dη) ≥ (ω, ω).

The equality holds if and only if dη = 0. ∗ω ∈ Hn−k(M) follows immediately from ∆∗ = ∗∆.

Theorem 1 (Poincaré duality). Hodge ∗-operator gives an isomorphism Hk(M) ∼= Hn−k(M).

Proof. ∗ : Hk(M) → Hn−k(M) is an isomorphism because ∗∗ = (−1)k(n−k).

To relate Hk(M) with the usual de Rham cohomology, we introduce our main result in the real
case.

Theorem 2 (Hodge decomposition). There exists an isomorphism of vector spaces:

Ωk(M) = Hk(M)⊕ dΩk−1(M)⊕ δΩk+1(M).

More precisely, for any k-form ω, there exists a unique decomposition

ω = ωh + dσ + δτ,

where ωh ∈ Hk(M), σ ∈ Ωk−1(M), τ ∈ Ωk+1(M). When ω is closed, the decomposition reduces to

ω = ωh + dσ.

Theorem 3 (Poincaré duality for de Rham cohomology). We have an isomorphism Hk(M) ∼=
Hk

dR(M), which gives Poincaré duality for de Rham cohomology

Hk
dR(M) ∼= Hn−k

dR (M).

Proof. Define a linear map ι : Hk(M) → Hk
dR(M) by ω 7→ [ω]. ι is injective by Proposition 4. ι is

surjective by Hodge decomposition. So ι is an isomorphism.
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2 Hodge theory for complex manifolds
2.1 Dolbeault cohomology
Let X be a n-dimensional complex manifold. Denote Ωp

X as the sheaf of holomorphic p-forms on
X and Ak

X,C as the sheaf of complex k-forms on X. Recall the decomposition of sheaves

Ak
X,C =

⊕
p+q=k

Ap,q
X ,

and the differential
∂ : Ap,q

X → Ap+1,q
X

∂̄ : Ap,q
X → Ap,q+1

X ,

where Ap,q
X is the sheaf of forms of type (p, q) on X. Recall these sheaves Ap,q are acyclic, i.e.,

have trivial higher cohomology from partition of unity. Then Dolbeault cohomology with respect
to differential forms is defined by

Hp,q(X) := Hq(Ap,•(X), ∂̄) =
Ker(∂̄ : Ap,q(X) → Ap,q+1(X))

Im(∂̄ : Ap,q−1(X) → Ap,q(X))
.

In fact, the Dolbeault cohomology is isomorphic to sheaf cohomology of Ωp
X , i.e.,

Hp,q(X) ∼= Hq(X,Ωp
X).

To see this, it suffices to see the acyclic resolution

0 → Ωp
X → Ap,0 ∂̄−→ Ap,1 → · · ·

from ∂̄-Poincaré lemma.
Let E be a complex vector bundle over X and Ap,q(E) denote the sheaf defined by

U 7→ Ap,q(U,E) := Γ(U,∧p,qX ⊗ E),

where the tensor product is taken over OX . Locally, a section α of Ap,q(E) can be written as
α = σαi ⊗ si with α and si local sections of Ap,q

X and E respectively.

Lemma 1. Suppose E is a holomorphic vector bundle. There exists a natural C-linear operator
∂̄E : Ap,q(E) → Ap,q+1(E) with ∂̄2E = 0 and which satisfies the Leibniz rule

∂̄E(f · α) = ∂̄(f) ∧ α+ f∂̄E(α).

Proof. Choose a local trivialization s = (s1, · · · , sr) of E and write α ∈ Ap,q(E) locally as α =∑
αi ⊗ si, where α ∈ Ap,q

X . Define

∂̄Eα :=
∑

∂̄(αi)⊗ si.

Suppose we choose another holomorphic trivialization s′ = (s′1, · · · , s′r) and obtain an operator ∂̄′E .
Let si =

∑
j ψijs

′
j , where ψij is the holomorphic transition function. Then

∂̄′Eα = ∂̄′E
(∑

αi ⊗
∑
j

ψijs
′
j

)
=

∑
i,j

∂̄(αiψij)⊗ s′j

=
∑
i,j

∂̄(αi)ψij ⊗ s′j = ∂̄E(α).

So ∂̄E = ∂̄′E is independent of the choice of local trivialization. Therefore, ∂̄2E = 0 since ∂̄2 = 0.
From Leibniz rule of ∂̄,

∂̄E(f · α) = ∂̄E(
∑

fαi ⊗ si)

=
∑

∂̄(fαi)⊗ si

=
∑(

∂̄(f) ∧ αi + f∂̄(αi)
)
⊗ si

= ∂̄(f) ∧ α+ f∂̄E(α).
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The above lemma gives a complex (Ap,•(X,E), ∂̄E), whose cohomology is called Dolbeault
cohomology of the holomorphic vector bundle E:

Hp,q(X,E) := Hq(Ap,•(X,E), ∂̄E) =
Ker(∂̄E : Ap,q(X,E) → Ap,q+1(X,E))

Im(∂̄E : Ap,q−1(X,E) → Ap,q(X,E))
.

Similarly, Dolbeault cohomology of holomorphic vector bundles is isomorphic to sheaf cohomology:

Hp,q(X,E) ∼= Hq(X,E ⊗ Ωp
X),

which follows from acyclic resolution of E ⊗ Ωp
X :

0 → E ⊗ Ωp
X → Ap,0(E)

∂̄E−−→ Ap,1(E) → · · ·

To summarize what we obtain:

Dolbeault cohomology of a holomorphic vector bundle E = sheaf cohomology of E ⊗ Ωp
X .

2.2 Hermitian and Kähler structure on complex manifolds
We briefly recall some definition in this subsection.

Let X be a complex manifold with almost complex structure I and complex dimension n. A
Riemann metric g on X is an hermitian structure if for any point x ∈ X, the scalar product gx is
compatible with I, i.e.,

gx(Iv, Iw) = gx(v, w).

The induced real (1, 1)-form ω := g(I(), ()) is called the fundamental form of hermitian manifold
(X, g). After complexification, the fundamental form ω is locally of the form

ω =
i

2

n∑
i,j=1

hijdzi ∧ dz̄j ,

where (hij(x)) is a positive definition matrix for each x ∈ X. It is not difficult to see that the
hermitian structure is uniquely determined by I and ω. The hermitian structure g is called a
Kähler structure if ω is closed. Denote the hermitian extension of g by gC.

The Hodge ∗−operator ∗ :
∧k

CX →
∧2n−k

C X is similar to the one defined for Riemann mani-
folds (X, g) with the natural volume form Ω. More precisely, ∗ is defined by α ∧ ∗β̄ = gC(α, β)Ω.
When restricted to

∧k
CX, ∗ reduces to the usual Hodge ∗−operator for Riemann manifolds.

With Hodge ∗−operator, we can define several adjoint operators. Regard (X, g) as a real
Riemann manifold with natural volume form Ω. Since X has even dimension, the adjoint operator
d∗ = δ is exactly d∗ = − ∗ ◦d ◦ ∗. Analogously, one defines ∂∗ and ∂̄∗ as ∂∗ := − ∗ ◦∂̄ ◦ ∗ and
∂̄∗ = − ∗ ◦∂ ◦ ∗ to make d∗ = ∂∗ + ∂̄∗ valid.

Therefore, it is natural to define the Laplacian operator associated to d, ∂, ∂̄: ∆ := d∗d+ dd∗,
∆∂ = ∂∗∂ + ∂∂∗, ∆∂̄ = ∂̄∗∂̄ + ∂̄∂̄∗. Note that ∗ : Ap,q(X) → An−q,n−p(X), ∂∗ : Ap,q(X) →
Ap−1,q(X), ∂̄∗ : Ap,q(X) → Ap,q−1(X) and ∆∂ ,∆∂̄ perserve bidegrees.

2.3 Hodge decomposition for Kähler manifolds
Syppose X is a complex manifold with an hermitian structure g and natural fundamental form Ω.
The hermitian extension of g is denoted by gC. Define an hermitian product on A∗

C(X) by

(α, β) :=

∫
X

gC(α, β) ∗ 1 =

∫
X

gC(α, β)Ω.

Note that the value of g on A∗(X) is the exactly the inner product defined in the first section.
With respect to the hermitian product (−,−). The degree decomposition

A∗
C(X) =

⊕
k

Ak
C(X)

and the bidegree decomposition
Ak

C(X) =
⊕

p+q=k

Ap,q(X)

are both orthogonal decompositions and each component Ap,q(X) is an infinite dimensional normed
vector space with scalar product (−,−) and the induced norm ‖α‖2 = (α, α).
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Proposition 5. Suppose X is a closed hermitian manifold. Then with respect to (−,−), the
operators d∗, ∂∗, ∂̄∗ are actually adjoint operators of d, ∂, ∂̄.

Proof. We give a proof for ∂ for example. For α ∈ Ap−1,q(X) and β ∈ Ap,q(X),

(∂α, β) =

∫
X

gC(∂α, β) ∗ 1 =

∫
X

∂α ∧ ∗β̄

=

∫
X

∂(α ∧ ∗β̄)− (−1)p+q−1

∫
X

α ∧ ∂(∗β̄)

Since α ∧ ∗β̄ is of bidegree (n− 1, n), ∂(α ∧ ∗β̄) = d(α ∧ ∗β̄). So∫
X

∂(α ∧ ∗β̄) = 0

by Stokes’ theorem. Using ∗2 = (−1)k on Ak(X), we compute∫
X

α ∧ ∂(∗β̄) = (−1)2n−(p+q)+1

∫
X

gC(α,−∂∗β) ∗ 1 = (−1)2n−(p+q)(α, ∂∗β).

So (∂α, β) = (α, ∂∗β).

In the case of real manifolds, we interpret de Rham cohomology by harmonic forms. In the
complex case, we will apply similar approach. For the differential d, the spaces of harmonic k-
forms and (p, q)-forms (which are defined similarly in the real case) are denoted by Hk(X, g) and
Hp,q(X, g). For ∂ and ∂̄, we have analogous definition.

Definition 2. A k-form is called ∂̄-harmonic if ∆∂̄α = 0 and define the spaces of ∂̄-harmonic
k-forms and (p, q)-forms by Hk

∂̄
(X, g) and Hp,q

∂̄
(X, g). ∂-harmonic forms are analogous.

Proposition 6. Suppose (X, g) is a closed hermitian manifold. A form α is ∂̄-harmonic (resp.
∂-harmonic) if and only if ∂̄α = ∂̄∗α = 0 (resp. ∂α = ∂∗α = 0).

Proof. The ∂̄ case follows from the identity

(∆∂̄α, α) = (∂̄∗∂̄α+ ∂̄∂̄∗α, α)

= ‖∂̄∗(α)‖2 + ‖∂̄‖2.

Proposition 7. Suppose (X, g) is an hermitian manifold. Then

1. Hk
∂̄
(X, g) =

⊕
p+q=k H

p,q

∂̄
(X, g) and Hk

∂(X, g) =
⊕

p+q=k H
p,q
∂ (X, g).

2. If (X, g) is Kähler, then both decompositions coincide with Hk(X, g)C =
⊕

p+q=k Hp,q(X, g).
In particular, Hk(X, g)C = Hk

∂̄
(X, g) = Hk

∂(X, g).

Proof. Suppose α =
∑
αp,q is the bidegree decomposition of a ∂̄-harmonic form α. Then

0 =
∑

∆∂̄(α
p,q)

is also a bidegree decomposition, which implies ∆∂̄(α
p,q) = 0 for all p, q. The proof of ∂ decompo-

sition is analogous.
The second assertion follows from the identity ∆∂ = ∆∂̄ = 1

2∆ on a Kähler manifold.

Theorem 4 (Serre duality for harmonic forms). Suppose (X, g) is a compact connected hermitian
manifold. Then the pairing

Hp,q

∂̄
(X, g)×Hn−p,n−q

∂̄
(X, g) → C, (α, β) 7→

∫
X

α ∧ β

is non-degenerate. This yields an isomorphism

Hp,q

∂̄
(X, g) ∼= Hn−p,n−q

∂̄
(X, g)∗.
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Proof. Suppose 0 6= α ∈ Hp,q

∂̄
(X, g). Then∫

X

α ∧ ∗ᾱ = ‖α‖2 > 0

implies the pairing is non-degenerate.

Our main result is:

Theorem 5 (Hodge decomposition of harmonic forms). Let (X, g) be a compact hermitian mani-
fold. Then there exists two natural orthogonal decompositions

Ap,q(X) = ∂Ap−1,q(X)⊕Hp,q
∂ (X, g)⊕ ∂∗Ap+1,q(X),

Ap,q(X) = ∂̄Ap−1,q(X)⊕Hp,q

∂̄
(X, g)⊕ ∂̄∗Ap+1,q(X).

Moreover, Hp,q(X, g)C are all finite dimensional and if X is a Kähler manifold, then Hp,q(X, g)C =
Hp,q

∂ (X, g) = Hp,q

∂̄
(X, g).

The most nontrivial part is the existence of decomposition. We will not prove it in our note.
The significance of Kähler condition is that we can forget all about ’∂̄ or ∂̄-harmonic’, and replace
them by ’harmonic’.

Corollary 1. Suppose (X, g) is a compact hermitian manifold. Then the canonical map Hp,q

∂̄
(X, g) →

Hp,q(X) is an isomorphism.

Proof. The canonical map Hp,q

∂̄
(X, g) → Hp,q(X) is given by α 7→ [α], where [α] is a cohomology

class of α. This map is injective because any harmonic coboundary ∂̄β must satisfy ∂̄∗∂̄β = 0.
But 0 = (∂̄∗∂̄β, β) = (∂̄β, ∂̄β) = ‖∂̄β‖2 = 0 implies ∂̄β = 0. To show this map is surjective, it
suffices to show any ∂̄−closed (p, q)−form β must be cohomological to a ∂̄−harmonic form. By
Hodge decomposition, write β = ∂̄β1 + βh + ∂̄∗β2, where βh is harmonic. Since ∂̄β = 0, it follows
∂̄∂̄∗β2 = 0, which implies ∂̄∗β2 by a similar argument in the injective case.

The proof shows the Hodge decomposition for closed forms does not contain the terms ∂∗Ap+1,q(X)
or ∂̄∗Ap+1,q(X), just as the case in real manifolds.

Corollary 2. Let (X, g) be a compact Kähler manifold. Then there exists a decomposition

Hk(X,C) =
⊕

p+q=k

Hp,q(X)

which does not depend on the Kähler structure.

Proof. Since X is Kähler,

Hk(X,C) = Hk(X, g)C =
⊕

p+q=k

Hp,q(X, g) =
⊕

p+q=k

Hp,q(X).

To show the decomposition is independent of the Kähler structure, we choose two Kähler metric
g, g′ and α ∈ Hp,q(X, g), α′ ∈ Hp,q(X, g′), which induce same elements in Hp,q(X). So α and α′

differ by some ∂̄γ, i.e., α′ = α+ ∂̄γ. Then d∂̄γ = 0. By Hodge decomposition for d,

∂̄γ = dβ + βh.

But 0 = (γ, ∂̄∗βh) = (∂̄γ, βh) = (βh, βh) implies βh = 0. So ∂̄γ ∈ d(Ak−1
C (X)) and α, α′ induces

the same de Rham cohomology class in Hk(X,C).

3 Serre duality
In this section, we will give a generalized version of Hodge decomposition and Serre duality on
a holomorphic vector bundle. Serre duality, together with Riemann-Roch theorem and Kodaira
vanishing theorem, is significant in controlling the cohomology of holomorphic vector bundles.
Most parts of this section are routine.
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3.1 Hermitian structure on vector bundles
Suppose M is a real manifold and E →M is a complex vector bundle.

Definition 3. An hermitian structure h on E → M is an hermitian scalar product hx on each
fiber E(x) which depends differtiably on x, The pair (E, h) is called an hermitian vector bundle.

If ψ : E|U ∼= U ×Cr is a trivialization over some open subset U , then hx is given by a positive-
definite hermitian matrix (hij(x)) for each x ∈ U . The definition says (hij(x)) relies differtiably
on x ∈ U .

Example 1. If (X, g) is an hermitian manifold, then the tangent, cotangent and form bundles
have natural hermitian structures. Moreover, if (E, h) is an hermitian vector bundle over (X, g),
then

∧p,q
X ⊗ E have natural hermitian structures.

Proposition 8. Every complex vector bundle admits an hermitian structure.

Proof. Choose an open covering X =
∪
Ui trivializing E and glue the constant hermitian structure

on the trivial bundles Ui × Cr by means of partition of unity. The resulting product is hermitian
because positive linear combination of hermitian product is again hermitian.

Now let (X, g) be an hermitian manifold of complex dimension n and (E, h) is an hermitian
vector bundle. Denote the induced hermitian structure on

∧p,q
X⊗E by (−,−). We may interpret

h as a C−antilinear isomorphism h : E ∼= E∗.

Definition 4. Hodge ∗-operator ∗̄E :
∧p,q

X ⊗ E →
∧n−p,n−q

X ⊗ E∗ is defined by

∗̄E(φ⊗ s) = ∗̄E(φ)⊗ h(s) = ∗(φ)⊗ h(s) = ∗(φ̄)⊗ h(s).

Hodge ∗-operator ∗̄E is a C-antilinear isomorphism that depends on g and h. Similarly, we
check easily

(α, β) ∗ 1 = α ∧ ∗̄E(β)
where ∧ means taking usual wedge products in the form part and evaluation map in the bundle
part. Moreover, ∗̄E ◦ ∗̄E = (−1)p+q on

∧p,q
X ⊗ E. From now on, denote Ap,q(E) by sheaf of

sections of
∧p,q

X ⊗ E. We will not distinguish Ap,q(E) and
∧p,q

X ⊗ E from now on.
Define ∂̄E : Ap,q(E) → Ap,q+1(E) by ∂̄E(α ⊗ s) = ∂̄(α) ⊗ s and its adjoint operator ∂̄∗E :

Ap,q(E) → Ap,q−1(E) by ∂̄∗E = −∗̄E∗ ◦ ∂̄E∗ ◦ ∗̄E . The Laplacian operator ∆E : Ap,q(E) → Ap,q(E)
is defined by ∆E = ∂̄∗E ∂̄E + ∂̄E ∂̄

∗
E .

Definition 5. A section α ∈ Ap,q(E) is called harmonic if ∆E(α) = 0. The space of harmonic
forms is denoted by Hp,q(X,E).

Since ∗̄E commutes with ∆E , ∗̄E restricts to a C−antilinear isomorphism ∗̄E : Hp,q(X,E) →
Hp,q(X,E∗).

From now on, we suppose (X, g) is a compact hermitian manifold. Define a hermitian scalar
product on Ap,q(X,E) by

(α, β) =

∫
X

(α, β) ∗ 1,

where (−,−) inside the integral is the pointwise hermitian inner product on Ap,q(X,E).

Proposition 9. 1. ∂̄∗E is actually the adjoint operator of ∂̄E and ∆E is self-adjoint with respect
to (−,−).

2. α ∈ Ap,q(X,E) is harmonic if and only if ∂̄E(α) = ∂̄∗E(α) = 0.

Proof. Analogous to Proposition 2 and 3.

3.2 Serre duality on vector bundles
To give Serre duality on vector bundles, we have to give a generalized version of Hodge decompo-
sition for vector bundles.

Theorem 6 (Hodge decomposition for vector bundles). Suppose (X, g) is a compact hermitian
manifold and (E, h) is an hermitian vector bundle. We have Hodge decomposition

Ap,q(X,E) = ∂̄EAp,q−1(X,E)⊕Hp,q(X,E)⊕ ∂̄∗EAp,q+1(X,E)

and Hp,q(X,E) is finite dimensional for each p and q.
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If we choose E = OX , the above theorem reduces to the usual Hodge decomposition.

Corollary 3. The natural map Hp,q(X,E) → Hp,q(X,E) is an isomorphism. In particular,
Dolbeault cohomology Hp,q(X,E) ∼= Hq(X,E ⊗ Ωp

X) is finite dimensional.

Proof. To show the map is injective, choose a harmonic coboundary ∂̄Eβ. So

0 = (∂̄∗E ∂̄Eβ, β) = (∂̄Eβ, ∂̄Eβ) = ‖∂̄Eβ‖2

implies ∂̄Eβ = 0.
To show the map is surjective, choose a closed element α ∈ Ap,q(X,E) and by Hodge decom-

position,
α = ∂̄Eα1 + αh + ∂̄∗Eα2.

Since ∂̄Eα = 0, ∂̄E ∂̄∗Eα2 = 0 and then ∂̄∗Eα2 = 0. So α = ∂̄Eα1 + αh, i.e., the image of αh ∈
Hp,q(X,E) under the natural map is the cohomology class [α].

By this corollary, we see any (nonzero) Dolbeault cohomology class can be represented by a
(nonzero) harmonic element.

Theorem 7 (Serre duality for vector bundles). Suppose X is a compact complex manifold. For
any holomorphic vector bundle E on X, define a pairing

Hp,q(X,E)×Hn−p,n−q(X,E∗) → C

by
(α, β) 7→

∫
X

α ∧ β.

Then the pairing is non-degenerate.

Proof. This pairing is well-defined by Stokes’ theorem. Choose hermitian structures h and g on E
and X. For any nonzero cohomology class in Hp,q(X,E), we can find a nonzero harmonic element
α ∈ Hp,q(X,E) representing the given class. Define β = ∗̄Eα ∈ Hn−p,n−q(X,E∗). We check∫

X

α ∧ β =

∫
X

α ∧ ∗̄Eα =

∫
X

(α, α) ∗ 1 = ‖α‖2 6= 0.

So this pairing is non-degenerate.

Corollary 4. For any holomorphic vector bundle E over a compact complex manifold X, there
exist C−linear isomorphisms:

Hq(X,E ⊗ Ωp) ∼= Hp,q(X,E) ∼= Hn−p,n−q(X,E∗)∗ ∼= Hn−q(X,E∗ ⊗ Ωn−p)∗
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